Source code for evalml.pipelines.time_series_classification_pipelines


import pandas as pd

from .binary_classification_pipeline_mixin import (
    BinaryClassificationPipelineMixin
)

from evalml.objectives import get_objective
from evalml.pipelines.classification_pipeline import ClassificationPipeline
from evalml.pipelines.pipeline_meta import TimeSeriesPipelineBaseMeta
from evalml.problem_types import ProblemTypes
from evalml.utils import (
    drop_rows_with_nans,
    infer_feature_types,
    pad_with_nans
)


[docs]class TimeSeriesClassificationPipeline(ClassificationPipeline, metaclass=TimeSeriesPipelineBaseMeta): """Pipeline base class for time series classification problems."""
[docs] def __init__(self, component_graph, parameters=None, custom_name=None, custom_hyperparameters=None, random_seed=0): """Machine learning pipeline for time series classification problems made out of transformers and a classifier. Arguments: component_graph (list or dict): List of components in order. Accepts strings or ComponentBase subclasses in the list. Note that when duplicate components are specified in a list, the duplicate component names will be modified with the component's index in the list. For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will have names ["Imputer", "One Hot Encoder", "Imputer_2", "Logistic Regression Classifier"] parameters (dict): Dictionary with component names as keys and dictionary of that component's parameters as values. An empty dictionary {} implies using all default values for component parameters. Pipeline-level parameters such as date_index, gap, and max_delay must be specified with the "pipeline" key. For example: Pipeline(parameters={"pipeline": {"date_index": "Date", "max_delay": 4, "gap": 2}}). random_seed (int): Seed for the random number generator. Defaults to 0. """ if "pipeline" not in parameters: raise ValueError("date_index, gap, and max_delay parameters cannot be omitted from the parameters dict. " "Please specify them as a dictionary with the key 'pipeline'.") pipeline_params = parameters["pipeline"] self.date_index = pipeline_params['date_index'] self.gap = pipeline_params['gap'] self.max_delay = pipeline_params['max_delay'] super().__init__(component_graph, custom_name=custom_name, parameters=parameters, custom_hyperparameters=custom_hyperparameters, random_seed=random_seed)
@staticmethod def _convert_to_woodwork(X, y): if X is None: X = pd.DataFrame() X = infer_feature_types(X) y = infer_feature_types(y) return X, y
[docs] def fit(self, X, y): """Fit a time series classification pipeline. Arguments: X (pd.DataFrame or np.ndarray): The input training data of shape [n_samples, n_features] y (pd.Series, np.ndarray): The target training targets of length [n_samples] Returns: self """ X, y = self._convert_to_woodwork(X, y) self._encoder.fit(y) y = self._encode_targets(y) X_t = self._compute_features_during_fit(X, y) y_shifted = y.shift(-self.gap) X_t, y_shifted = drop_rows_with_nans(X_t, y_shifted) self.estimator.fit(X_t, y_shifted) self.input_feature_names = self._component_graph.input_feature_names return self
def _estimator_predict(self, features, y): """Get estimator predictions. This helper passes y as an argument if needed by the estimator. """ y_arg = None if self.estimator.predict_uses_y: y_arg = y return self.estimator.predict(features, y=y_arg) def _estimator_predict_proba(self, features, y): """Get estimator predicted probabilities. This helper passes y as an argument if needed by the estimator. """ y_arg = None if self.estimator.predict_uses_y: y_arg = y return self.estimator.predict_proba(features, y=y_arg) def _predict(self, X, y, objective=None, pad=False): features = self.compute_estimator_features(X, y) features_no_nan, y_no_nan = drop_rows_with_nans(features, y) predictions = self._estimator_predict(features_no_nan, y_no_nan) if pad: padded = pad_with_nans(predictions, max(0, features.shape[0] - predictions.shape[0])) return infer_feature_types(padded) return predictions
[docs] def predict(self, X, y=None, objective=None): """Make predictions using selected features. Arguments: X (pd.DataFrame, or np.ndarray): Data of shape [n_samples, n_features] y (pd.Series, np.ndarray, None): The target training targets of length [n_samples] objective (Object or string): The objective to use to make predictions Returns: pd.Series: Predicted values. """ X, y = self._convert_to_woodwork(X, y) y = self._encode_targets(y) n_features = max(len(y), X.shape[0]) predictions = self._predict(X, y, objective=objective, pad=False) # In case gap is 0 and this is a baseline pipeline, we drop the nans in the # predictions before decoding them predictions = pd.Series(self._decode_targets(predictions.dropna()), name=self.input_target_name) padded = pad_with_nans(predictions, max(0, n_features - predictions.shape[0])) return infer_feature_types(padded)
[docs] def predict_proba(self, X, y=None): """Make probability estimates for labels. Arguments: X (pd.DataFrame or np.ndarray): Data of shape [n_samples, n_features] Returns: pd.DataFrame: Probability estimates """ X, y = self._convert_to_woodwork(X, y) y = self._encode_targets(y) features = self.compute_estimator_features(X, y) features_no_nan, y_no_nan = drop_rows_with_nans(features, y) proba = self._estimator_predict_proba(features_no_nan, y_no_nan) proba.columns = self._encoder.classes_ padded = pad_with_nans(proba, max(0, features.shape[0] - proba.shape[0])) return infer_feature_types(padded)
[docs] def score(self, X, y, objectives): """Evaluate model performance on current and additional objectives. Arguments: X (pd.DataFrame or np.ndarray): Data of shape [n_samples, n_features] y (pd.Series): True labels of length [n_samples] objectives (list): Non-empty list of objectives to score on Returns: dict: Ordered dictionary of objective scores """ X, y = self._convert_to_woodwork(X, y) objectives = self.create_objectives(objectives) y_encoded = self._encode_targets(y) y_shifted = y_encoded.shift(-self.gap) y_predicted, y_predicted_proba = self._compute_predictions(X, y, objectives, time_series=True) y_shifted, y_predicted, y_predicted_proba = drop_rows_with_nans(y_shifted, y_predicted, y_predicted_proba) return self._score_all_objectives(X, y_shifted, y_predicted, y_pred_proba=y_predicted_proba, objectives=objectives)
[docs]class TimeSeriesBinaryClassificationPipeline(BinaryClassificationPipelineMixin, TimeSeriesClassificationPipeline, metaclass=TimeSeriesPipelineBaseMeta): problem_type = ProblemTypes.TIME_SERIES_BINARY def _predict(self, X, y, objective=None, pad=False): features = self.compute_estimator_features(X, y) features_no_nan, y_no_nan = drop_rows_with_nans(features, y) if objective is not None: objective = get_objective(objective, return_instance=True) if not objective.is_defined_for_problem_type(self.problem_type): raise ValueError(f"Objective {objective.name} is not defined for time series binary classification.") if self.threshold is None: predictions = self._estimator_predict(features_no_nan, y_no_nan) else: proba = self._estimator_predict_proba(features_no_nan, y_no_nan) proba = proba.iloc[:, 1] if objective is None: predictions = proba > self.threshold else: predictions = objective.decision_function(proba, threshold=self.threshold, X=features_no_nan) if pad: predictions = pad_with_nans(predictions, max(0, features.shape[0] - predictions.shape[0])) return infer_feature_types(predictions) @staticmethod def _score(X, y, predictions, objective): """Given data, model predictions or predicted probabilities computed on the data, and an objective, evaluate and return the objective score. """ if predictions.ndim > 1: predictions = predictions.iloc[:, 1] return TimeSeriesClassificationPipeline._score(X, y, predictions, objective)
[docs]class TimeSeriesMulticlassClassificationPipeline(TimeSeriesClassificationPipeline): problem_type = ProblemTypes.TIME_SERIES_MULTICLASS