import warnings
import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn.preprocessing import label_binarize
from ..utils import classproperty
from .binary_classification_objective import BinaryClassificationObjective
from .multiclass_classification_objective import (
MulticlassClassificationObjective,
)
from .regression_objective import RegressionObjective
from .time_series_regression_objective import TimeSeriesRegressionObjective
[docs]class AccuracyBinary(BinaryClassificationObjective):
"""Accuracy score for binary classification."""
name = "Accuracy Binary"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.accuracy_score(y_true, y_predicted)
[docs]class AccuracyMulticlass(MulticlassClassificationObjective):
"""Accuracy score for multiclass classification."""
name = "Accuracy Multiclass"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.accuracy_score(y_true, y_predicted)
[docs]class BalancedAccuracyBinary(BinaryClassificationObjective):
"""Balanced accuracy score for binary classification."""
name = "Balanced Accuracy Binary"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.balanced_accuracy_score(y_true, y_predicted)
[docs]class BalancedAccuracyMulticlass(MulticlassClassificationObjective):
"""Balanced accuracy score for multiclass classification."""
name = "Balanced Accuracy Multiclass"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.balanced_accuracy_score(y_true, y_predicted)
[docs]class F1(BinaryClassificationObjective):
"""F1 score for binary classification."""
name = "F1"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, zero_division=0.0)
[docs]class F1Micro(MulticlassClassificationObjective):
"""F1 score for multiclass classification using micro averaging."""
name = "F1 Micro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, average="micro", zero_division=0.0)
[docs]class F1Macro(MulticlassClassificationObjective):
"""F1 score for multiclass classification using macro averaging."""
name = "F1 Macro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, average="macro", zero_division=0.0)
[docs]class F1Weighted(MulticlassClassificationObjective):
"""F1 score for multiclass classification using weighted averaging."""
name = "F1 Weighted"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(
y_true, y_predicted, average="weighted", zero_division=0.0
)
[docs]class Precision(BinaryClassificationObjective):
"""Precision score for binary classification."""
name = "Precision"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(y_true, y_predicted, zero_division=0.0)
[docs]class PrecisionMicro(MulticlassClassificationObjective):
"""Precision score for multiclass classification using micro averaging."""
name = "Precision Micro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(
y_true, y_predicted, average="micro", zero_division=0.0
)
[docs]class PrecisionMacro(MulticlassClassificationObjective):
"""Precision score for multiclass classification using macro averaging."""
name = "Precision Macro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(
y_true, y_predicted, average="macro", zero_division=0.0
)
[docs]class PrecisionWeighted(MulticlassClassificationObjective):
"""Precision score for multiclass classification using weighted averaging."""
name = "Precision Weighted"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(
y_true, y_predicted, average="weighted", zero_division=0.0
)
[docs]class Recall(BinaryClassificationObjective):
"""Recall score for binary classification."""
name = "Recall"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(y_true, y_predicted, zero_division=0.0)
[docs]class RecallMicro(MulticlassClassificationObjective):
"""Recall score for multiclass classification using micro averaging."""
name = "Recall Micro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(
y_true, y_predicted, average="micro", zero_division=0.0
)
[docs]class RecallMacro(MulticlassClassificationObjective):
"""Recall score for multiclass classification using macro averaging."""
name = "Recall Macro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(
y_true, y_predicted, average="macro", zero_division=0.0
)
[docs]class RecallWeighted(MulticlassClassificationObjective):
"""Recall score for multiclass classification using weighted averaging."""
name = "Recall Weighted"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(
y_true, y_predicted, average="weighted", zero_division=0.0
)
[docs]class AUC(BinaryClassificationObjective):
"""AUC score for binary classification."""
name = "AUC"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.roc_auc_score(y_true, y_predicted)
[docs]class AUCMicro(MulticlassClassificationObjective):
"""AUC score for multiclass classification using micro averaging."""
name = "AUC Micro"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(y_true, y_predicted, average="micro")
[docs]class AUCMacro(MulticlassClassificationObjective):
"""AUC score for multiclass classification using macro averaging."""
name = "AUC Macro"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(y_true, y_predicted, average="macro")
[docs]class AUCWeighted(MulticlassClassificationObjective):
"""AUC Score for multiclass classification using weighted averaging."""
name = "AUC Weighted"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(y_true, y_predicted, average="weighted")
[docs]class LogLossBinary(BinaryClassificationObjective):
"""Log Loss for binary classification."""
name = "Log Loss Binary"
greater_is_better = False
score_needs_proba = True
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.log_loss(y_true, y_predicted)
[docs]class LogLossMulticlass(MulticlassClassificationObjective):
"""Log Loss for multiclass classification."""
name = "Log Loss Multiclass"
greater_is_better = False
score_needs_proba = True
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.log_loss(y_true, y_predicted)
[docs]class MCCBinary(BinaryClassificationObjective):
"""Matthews correlation coefficient for binary classification."""
name = "MCC Binary"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = False # Range [-1, 1]1
[docs] def objective_function(self, y_true, y_predicted, X=None):
with warnings.catch_warnings():
# catches runtime warning when dividing by 0.0
warnings.simplefilter("ignore", RuntimeWarning)
return metrics.matthews_corrcoef(y_true, y_predicted)
[docs]class MCCMulticlass(MulticlassClassificationObjective):
"""Matthews correlation coefficient for multiclass classification."""
name = "MCC Multiclass"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = False # Range [-1, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None):
with warnings.catch_warnings():
# catches runtime warning when dividing by 0.0
warnings.simplefilter("ignore", RuntimeWarning)
return metrics.matthews_corrcoef(y_true, y_predicted)
[docs]class RootMeanSquaredError(RegressionObjective):
"""Root mean squared error for regression."""
name = "Root Mean Squared Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.mean_squared_error(y_true, y_predicted, squared=False)
[docs]class RootMeanSquaredLogError(RegressionObjective):
"""Root mean squared log error for regression.
Only valid for nonnegative inputs.Otherwise, will throw a ValueError.
"""
name = "Root Mean Squared Log Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return np.sqrt(metrics.mean_squared_log_error(y_true, y_predicted))
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data. Default False."""
return True
[docs]class MeanSquaredLogError(RegressionObjective):
"""Mean squared log error for regression.
Only valid for nonnegative inputs. Otherwise, will throw a ValueError
"""
name = "Mean Squared Log Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.mean_squared_log_error(y_true, y_predicted)
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data. Default False."""
return True
[docs]class R2(RegressionObjective):
"""Coefficient of determination for regression."""
name = "R2"
greater_is_better = True
score_needs_proba = False
perfect_score = 1
is_bounded_like_percentage = False # Range (-Inf, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.r2_score(y_true, y_predicted)
[docs]class MAE(RegressionObjective):
"""Mean absolute error for regression."""
name = "MAE"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = True # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.mean_absolute_error(y_true, y_predicted)
[docs]class MAPE(TimeSeriesRegressionObjective):
"""Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.
Only valid for nonzero inputs. Otherwise, will throw a ValueError
"""
name = "Mean Absolute Percentage Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
if (y_true == 0).any():
raise ValueError(
"Mean Absolute Percentage Error cannot be used when "
"targets contain the value 0."
)
if isinstance(y_true, pd.Series):
y_true = y_true.values
if isinstance(y_predicted, pd.Series):
y_predicted = y_predicted.values
scaled_difference = (y_true - y_predicted) / y_true
return np.abs(scaled_difference).mean() * 100
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data. Default False."""
return True
[docs]class MSE(RegressionObjective):
"""Mean squared error for regression."""
name = "MSE"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.mean_squared_error(y_true, y_predicted)
[docs]class MaxError(RegressionObjective):
"""Maximum residual error for regression."""
name = "MaxError"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.max_error(y_true, y_predicted)
[docs]class ExpVariance(RegressionObjective):
"""Explained variance score for regression."""
name = "ExpVariance"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = False # Range (-Inf, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.explained_variance_score(y_true, y_predicted)
def _handle_predictions(y_true, y_pred):
if len(np.unique(y_true)) > 2:
classes = np.unique(y_true)
y_true = label_binarize(y_true, classes=classes)
return y_true, y_pred