Source code for evalml.pipelines.components.estimators.regressors.linear_regressor

from sklearn.linear_model import LinearRegression as SKLinearRegression

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes


[docs]class LinearRegressor(Estimator): """Linear Regressor.""" name = "Linear Regressor" hyperparameter_ranges = {"fit_intercept": [True, False], "normalize": [True, False]} model_family = ModelFamily.LINEAR_MODEL supported_problem_types = [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ]
[docs] def __init__( self, fit_intercept=True, normalize=False, n_jobs=-1, random_seed=0, **kwargs ): parameters = { "fit_intercept": fit_intercept, "normalize": normalize, "n_jobs": n_jobs, } parameters.update(kwargs) linear_regressor = SKLinearRegression(**parameters) super().__init__( parameters=parameters, component_obj=linear_regressor, random_seed=random_seed, )
@property def feature_importance(self): return self._component_obj.coef_