Source code for evalml.pipelines.components.estimators.classifiers.logistic_regression_classifier

import numpy as np
from sklearn.linear_model import LogisticRegression as SKLogisticRegression
from skopt.space import Real

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes


[docs]class LogisticRegressionClassifier(Estimator): """ Logistic Regression Classifier. """ name = "Logistic Regression Classifier" hyperparameter_ranges = { "penalty": ["l2"], "C": Real(0.01, 10), } model_family = ModelFamily.LINEAR_MODEL supported_problem_types = [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ]
[docs] def __init__( self, penalty="l2", C=1.0, n_jobs=-1, multi_class="auto", solver="lbfgs", random_seed=0, **kwargs ): parameters = { "penalty": penalty, "C": C, "n_jobs": n_jobs, "multi_class": multi_class, "solver": solver, } parameters.update(kwargs) lr_classifier = SKLogisticRegression(random_state=random_seed, **parameters) super().__init__( parameters=parameters, component_obj=lr_classifier, random_seed=random_seed )
@property def feature_importance(self): coef_ = self._component_obj.coef_ # binary classification case if len(coef_) <= 2: return coef_[0] else: # multiclass classification case return np.linalg.norm(coef_, axis=0, ord=2)