from evalml.pipelines.components.transformers.samplers.base_sampler import (
BaseOverSampler,
)
from evalml.utils.woodwork_utils import infer_feature_types
[docs]class SMOTESampler(BaseOverSampler):
"""SMOTE Oversampler component. Works on numerical datasets only. This component is only run during training and not during predict."""
name = "SMOTE Oversampler"
hyperparameter_ranges = {}
[docs] def __init__(
self,
sampling_ratio=0.25,
k_neighbors_default=5,
n_jobs=-1,
random_seed=0,
**kwargs
):
super().__init__(
"SMOTE",
sampling_ratio=sampling_ratio,
k_neighbors_default=k_neighbors_default,
n_jobs=n_jobs,
random_seed=random_seed,
**kwargs
)
[docs]class SMOTENCSampler(BaseOverSampler):
"""SMOTENC Oversampler component. Uses SMOTENC to generate synthetic samples. Works on a mix of nomerical and categorical columns.
Input data must be Woodwork type, and this component is only run during training and not during predict."""
name = "SMOTENC Oversampler"
hyperparameter_ranges = {}
[docs] def __init__(
self,
sampling_ratio=0.25,
k_neighbors_default=5,
n_jobs=-1,
random_seed=0,
**kwargs
):
self.categorical_features = None
super().__init__(
"SMOTENC",
sampling_ratio=sampling_ratio,
k_neighbors_default=k_neighbors_default,
n_jobs=n_jobs,
random_seed=random_seed,
**kwargs
)
def _get_categorical(self, X):
X = infer_feature_types(X)
self.categorical_features = [
i
for i, val in enumerate(X.ww.types["Logical Type"].items())
if str(val[1]) in {"Boolean", "Categorical"}
]
self._parameters["categorical_features"] = self.categorical_features
[docs] def fit(self, X, y):
# get categorical features first
self._get_categorical(X)
super().fit(X, y)
[docs]class SMOTENSampler(BaseOverSampler):
"""SMOTEN Oversampler component. Uses SMOTEN to generate synthetic samples. Works for purely categorical datasets.
This component is only run during training and not during predict."""
name = "SMOTEN Oversampler"
hyperparameter_ranges = {}
[docs] def __init__(
self,
sampling_ratio=0.25,
k_neighbors_default=5,
n_jobs=-1,
random_seed=0,
**kwargs
):
super().__init__(
"SMOTEN",
sampling_ratio=sampling_ratio,
k_neighbors_default=k_neighbors_default,
n_jobs=n_jobs,
random_seed=random_seed,
**kwargs
)