preprocessing

Package Contents

Classes Summary

DateTimeFeaturizer

Transformer that can automatically extract features from datetime columns.

DelayedFeatureTransformer

Transformer that delays input features and target variable for time series problems.

DFSTransformer

Featuretools DFS component that generates features for the input features.

DropNullColumns

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

LSA

Transformer to calculate the Latent Semantic Analysis Values of text input.

PolynomialDetrender

Removes trends from time series by fitting a polynomial to the data.

TextFeaturizer

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

TextTransformer

Base class for all transformers working with text features.

Contents

class evalml.pipelines.components.transformers.preprocessing.DateTimeFeaturizer(features_to_extract=None, encode_as_categories=False, date_index=None, random_seed=0, **kwargs)[source]

Transformer that can automatically extract features from datetime columns.

Parameters
  • features_to_extract (list) – List of features to extract. Valid options include “year”, “month”, “day_of_week”, “hour”. Defaults to None.

  • encode_as_categories (bool) – Whether day-of-week and month features should be encoded as pandas “category” dtype. This allows OneHotEncoders to encode these features. Defaults to False.

  • date_index (str) – Name of the column containing the datetime information used to order the data. Ignored.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

DateTime Featurization Component

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits component to data

fit_transform

Fits on X and transforms X

get_feature_names

Gets the categories of each datetime feature.

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

get_feature_names(self)[source]

Gets the categories of each datetime feature.

Returns

Dictionary, where each key-value pair is a column name and a dictionary mapping the unique feature values to their integer encoding.

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns

Parameters
  • X (pd.DataFrame) – Data to transform

  • y (pd.Series, optional) – Ignored.

Returns

Transformed X

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.preprocessing.DelayedFeatureTransformer(date_index=None, max_delay=2, delay_features=True, delay_target=True, gap=1, random_seed=0, **kwargs)[source]

Transformer that delays input features and target variable for time series problems.

Parameters
  • date_index (str) – Name of the column containing the datetime information used to order the data. Ignored.

  • max_delay (int) – Maximum number of time units to delay each feature. Defaults to 2.

  • delay_features (bool) – Whether to delay the input features. Defaults to True.

  • delay_target (bool) – Whether to delay the target. Defaults to True.

  • gap (int) – The number of time units between when the features are collected and when the target is collected. For example, if you are predicting the next time step’s target, gap=1. This is only needed because when gap=0, we need to be sure to start the lagging of the target variable at 1. Defaults to 1.

  • random_seed (int) – Seed for the random number generator. This transformer performs the same regardless of the random seed provided.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

Delayed Feature Transformer

needs_fitting

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits the DelayFeatureTransformer.

fit_transform

Fits on X and transforms X

load

Loads component at file path

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Computes the delayed features for all features in X and y.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits the DelayFeatureTransformer.

Parameters
  • X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (pd.Series, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y)[source]

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Computes the delayed features for all features in X and y.

For each feature in X, it will add a column to the output dataframe for each delay in the (inclusive) range [1, max_delay]. The values of each delayed feature are simply the original feature shifted forward in time by the delay amount. For example, a delay of 3 units means that the feature value at row n will be taken from the n-3rd row of that feature

If y is not None, it will also compute the delayed values for the target variable.

Parameters
  • X (pd.DataFrame or None) – Data to transform. None is expected when only the target variable is being used.

  • y (pd.Series, or None) – Target.

Returns

Transformed X.

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.preprocessing.DFSTransformer(index='index', random_seed=0, **kwargs)[source]

Featuretools DFS component that generates features for the input features.

Parameters
  • index (string) – The name of the column that contains the indices. If no column with this name exists, then featuretools.EntitySet() creates a column with this name to serve as the index column. Defaults to ‘index’.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

DFS Transformer

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits the DFSTransformer Transformer component.

fit_transform

Fits on X and transforms X

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Computes the feature matrix for the input X using featuretools’ dfs algorithm.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits the DFSTransformer Transformer component.

Parameters
  • X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples, n_features]

  • y (pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
  • X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape [n_samples, n_features]

  • y (pd.Series, optional) – Ignored.

Returns

Feature matrix

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.preprocessing.DropNullColumns(pct_null_threshold=1.0, random_seed=0, **kwargs)[source]

Transformer to drop features whose percentage of NaN values exceeds a specified threshold.

Parameters
  • pct_null_threshold (float) – The percentage of NaN values in an input feature to drop. Must be a value between [0, 1] inclusive. If equal to 0.0, will drop columns with any null values. If equal to 1.0, will drop columns with all null values. Defaults to 0.95.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

Drop Null Columns Transformer

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits component to data

fit_transform

Fits on X and transforms X

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Transforms data X by dropping columns that exceed the threshold of null values.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Transforms data X by dropping columns that exceed the threshold of null values.

Parameters
  • X (pd.DataFrame) – Data to transform

  • y (pd.Series, optional) – Ignored.

Returns

Transformed X

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.preprocessing.LSA(random_seed=0, **kwargs)[source]

Transformer to calculate the Latent Semantic Analysis Values of text input.

Parameters

random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

LSA Transformer

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits component to data

fit_transform

Fits on X and transforms X

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Transforms data X by applying the LSA pipeline.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Transforms data X by applying the LSA pipeline.

Parameters
  • X (pd.DataFrame) – The data to transform.

  • y (pd.Series, optional) – Ignored.

Returns

Transformed X. The original column is removed and replaced with two columns of the

format LSA(original_column_name)[feature_number], where feature_number is 0 or 1.

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.preprocessing.PolynomialDetrender(degree=1, random_seed=0, **kwargs)[source]

Removes trends from time series by fitting a polynomial to the data.

Parameters
  • degree (int) – Degree for the polynomial. If 1, linear model is fit to the data. If 2, quadratic model is fit, etc. Defaults to 1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “degree”: Integer(1, 3)}

model_family

ModelFamily.NONE

modifies_features

False

modifies_target

True

name

Polynomial Detrender

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits the PolynomialDetrender.

fit_transform

Removes fitted trend from target variable.

inverse_transform

Adds back fitted trend to target variable.

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Removes fitted trend from target variable.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits the PolynomialDetrender.

Parameters
  • X (pd.DataFrame, optional) – Ignored.

  • y (pd.Series) – Target variable to detrend.

Returns

self

fit_transform(self, X, y=None)[source]

Removes fitted trend from target variable.

Parameters
  • X (pd.DataFrame, optional) – Ignored.

  • y (pd.Series) – Target variable to detrend.

Returns

The first element are the input features returned without modification.

The second element is the target variable y with the fitted trend removed.

Return type

tuple of pd.DataFrame, pd.Series

inverse_transform(self, y)[source]

Adds back fitted trend to target variable.

Parameters
  • X (pd.DataFrame, optional) – Ignored.

  • y (pd.Series) – Target variable.

Returns

The first element are the input features returned without modification.

The second element is the target variable y with the trend added back.

Return type

tuple of pd.DataFrame, pd.Series

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Removes fitted trend from target variable.

Parameters
  • X (pd.DataFrame, optional) – Ignored.

  • y (pd.Series) – Target variable to detrend.

Returns

The input features are returned without modification. The target

variable y is detrended

Return type

tuple of pd.DataFrame, pd.Series

class evalml.pipelines.components.transformers.preprocessing.TextFeaturizer(random_seed=0, **kwargs)[source]

Transformer that can automatically featurize text columns using featuretools’ nlp_primitives.

Parameters

random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

Text Featurization Component

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits component to data

fit_transform

Fits on X and transforms X

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Transforms data X by creating new features using existing text columns

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Transforms data X by creating new features using existing text columns

Parameters
  • X (pd.DataFrame) – The data to transform.

  • y (pd.Series, optional) – Ignored.

Returns

Transformed X

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.preprocessing.TextTransformer(component_obj=None, random_seed=0, **kwargs)[source]

Base class for all transformers working with text features.

Parameters
  • component_obj (obj) – Third-party objects useful in component implementation. Defaults to None.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits component to data

fit_transform

Fits on X and transforms X

load

Loads component at file path

name

Returns string name of this component

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Transforms data X.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

property name(cls)

Returns string name of this component

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)

Transforms data X.

Parameters
  • X (pd.DataFrame) – Data to transform.

  • y (pd.Series, optional) – Target data.

Returns

Transformed X

Return type

pd.DataFrame