estimators

Submodules

Package Contents

Classes Summary

ARIMARegressor

Autoregressive Integrated Moving Average Model.

BaselineClassifier

Classifier that predicts using the specified strategy.

BaselineRegressor

Baseline regressor that uses a simple strategy to make predictions.

CatBoostClassifier

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees.

CatBoostRegressor

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees.

DecisionTreeClassifier

Decision Tree Classifier.

DecisionTreeRegressor

Decision Tree Regressor.

ElasticNetClassifier

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

ElasticNetRegressor

Elastic Net Regressor.

Estimator

A component that fits and predicts given data.

ExtraTreesClassifier

Extra Trees Classifier.

ExtraTreesRegressor

Extra Trees Regressor.

KNeighborsClassifier

K-Nearest Neighbors Classifier.

LightGBMClassifier

LightGBM Classifier.

LightGBMRegressor

LightGBM Regressor.

LinearRegressor

Linear Regressor.

LogisticRegressionClassifier

Logistic Regression Classifier.

ProphetRegressor

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.

RandomForestClassifier

Random Forest Classifier.

RandomForestRegressor

Random Forest Regressor.

SVMClassifier

Support Vector Machine Classifier.

SVMRegressor

Support Vector Machine Regressor.

TimeSeriesBaselineEstimator

Time series estimator that predicts using the naive forecasting approach.

XGBoostClassifier

XGBoost Classifier.

XGBoostRegressor

XGBoost Regressor.

Contents

class evalml.pipelines.components.estimators.ARIMARegressor(date_index=None, trend=None, start_p=2, d=0, start_q=2, max_p=5, max_d=2, max_q=5, seasonal=True, n_jobs=- 1, random_seed=0, **kwargs)[source]

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima_model.ARIMA.html

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
  • date_index (str) – Specifies the name of the column in X that provides the datetime objects. Defaults to None.

  • trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when defining a polynomial, such as [1, 1, 0, 1].

  • start_p (int) – Minimum Autoregressive order. Defaults to 2.

  • d (int) – Minimum Differencing degree. Defaults to 0.

  • start_q (int) – Minimum Moving Average order. Defaults to 2.

  • max_p (int) – Maximum Autoregressive order. Defaults to 5.

  • max_d (int) – Maximum Differencing degree. Defaults to 2.

  • max_q (int) – Maximum Moving Average order. Defaults to 5.

  • seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

  • n_jobs (int or None) – Non-negative integer describing level of parallelism used for pipelines. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3, 10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

model_family

ModelFamily.ARIMA

modifies_features

True

modifies_target

False

name

ARIMA Regressor

predict_uses_y

False

supported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X, y=None)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.BaselineClassifier(strategy='mode', random_seed=0, **kwargs)[source]

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
  • strategy (str) – Method used to predict. Valid options are “mode”, “random” and “random_weighted”. Defaults to “mode”.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Baseline Classifier

predict_uses_y

False

supported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

Methods

classes_

Returns class labels. Will return None before fitting.

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature. Since baseline classifiers do not use input features to calculate predictions, returns an array of zeroes.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

property classes_(self)

Returns class labels. Will return None before fitting.

Returns

Class names

Return type

list[str] or list(float)

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature. Since baseline classifiers do not use input features to calculate predictions, returns an array of zeroes.

Returns

An array of zeroes

Return type

np.ndarray (float)

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)[source]

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.BaselineRegressor(strategy='mean', random_seed=0, **kwargs)[source]

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors.

Parameters
  • strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults to “mean”.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Baseline Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes.

Returns

An array of zeroes

Return type

np.ndarray (float)

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.CatBoostClassifier(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=True, allow_writing_files=False, random_seed=0, n_jobs=- 1, **kwargs)[source]

CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
  • n_estimators (float) – The maximum number of trees to build. Defaults to 10.

  • eta (float) – The learning rate. Defaults to 0.03.

  • max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

  • bootstrap_type (string) – Defines the method for sampling the weights of objects. Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

  • silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

  • allow_writing_files (boolean) – Whether to allow writing snapshot files while training. Defaults to False.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family

ModelFamily.CATBOOST

modifies_features

True

modifies_target

False

name

CatBoost Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=False, allow_writing_files=False, random_seed=0, n_jobs=- 1, **kwargs)[source]

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
  • n_estimators (float) – The maximum number of trees to build. Defaults to 10.

  • eta (float) – The learning rate. Defaults to 0.03.

  • max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

  • bootstrap_type (string) – Defines the method for sampling the weights of objects. Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

  • silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

  • allow_writing_files (boolean) – Whether to allow writing snapshot files while training. Defaults to False.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family

ModelFamily.CATBOOST

modifies_features

True

modifies_target

False

name

CatBoost Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.DecisionTreeClassifier(criterion='gini', max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_seed=0, **kwargs)[source]

Decision Tree Classifier.

Parameters
  • criterion ({"gini", "entropy"}) – The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain. Defaults to “gini”.

  • max_features (int, float or {"auto", "sqrt", "log2"}) –

    The number of features to consider when looking for the best split:

    • If int, then consider max_features features at each split.

    • If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.

    • If “auto”, then max_features=sqrt(n_features).

    • If “sqrt”, then max_features=sqrt(n_features).

    • If “log2”, then max_features=log2(n_features).

    • If None, then max_features = n_features.

    The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. Defaults to “auto”.

  • max_depth (int) – The maximum depth of the tree. Defaults to 6.

  • min_samples_split (int or float) –

    The minimum number of samples required to split an internal node:

    • If int, then consider min_samples_split as the minimum number.

    • If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

    Defaults to 2.

  • min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “criterion”: [“gini”, “entropy”], “max_features”: [“auto”, “sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family

ModelFamily.DECISION_TREE

modifies_features

True

modifies_target

False

name

Decision Tree Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.DecisionTreeRegressor(criterion='mse', max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_seed=0, **kwargs)[source]

Decision Tree Regressor.

Parameters
  • criterion ({"mse", "friedman_mse", "mae", "poisson"}) –

    The function to measure the quality of a split. Supported criteria are:

    • ”mse” for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node

    • ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for potential splits

    • ”mae” for the mean absolute error, which minimizes the L1 loss using the median of each terminal node,

    • ”poisson” which uses reduction in Poisson deviance to find splits.

  • max_features (int, float or {"auto", "sqrt", "log2"}) –

    The number of features to consider when looking for the best split:

    • If int, then consider max_features features at each split.

    • If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.

    • If “auto”, then max_features=sqrt(n_features).

    • If “sqrt”, then max_features=sqrt(n_features).

    • If “log2”, then max_features=log2(n_features).

    • If None, then max_features = n_features.

    The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

  • max_depth (int) – The maximum depth of the tree. Defaults to 6.

  • min_samples_split (int or float) –

    The minimum number of samples required to split an internal node:

    • If int, then consider min_samples_split as the minimum number.

    • If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

    Defaults to 2.

  • min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “criterion”: [“mse”, “friedman_mse”, “mae”], “max_features”: [“auto”, “sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family

ModelFamily.DECISION_TREE

modifies_features

True

modifies_target

False

name

Decision Tree Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.ElasticNetClassifier(penalty='elasticnet', C=1.0, l1_ratio=0.15, multi_class='auto', solver='saga', n_jobs=- 1, random_seed=0, **kwargs)[source]

Elastic Net Classifier. Uses Logistic Regression with elasticnet penalty as the base estimator.

Parameters
  • penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization. Defaults to “elasticnet”.

  • C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

  • l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. Defaults to 0.15.

  • multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then a binary problem is fit for each label. For “multinomial” the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. “multinomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

  • solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) –

    Algorithm to use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas “sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”, “saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

    • ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

    • ”liblinear” and “saga” also handle L1 penalty

    • ”saga” also supports “elasticnet” penalty

    • ”liblinear” does not support setting penalty=’none’

    Defaults to “saga”.

  • n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “C”: Real(0.01, 10), “l1_ratio”: Real(0, 1)}

model_family

ModelFamily.LINEAR_MODEL

modifies_features

True

modifies_target

False

name

Elastic Net Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15, max_iter=1000, normalize=False, random_seed=0, **kwargs)[source]

Elastic Net Regressor.

Parameters
  • alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

  • l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. Defaults to 0.15.

  • max_iter (int) – The maximum number of iterations. Defaults to 1000.

  • normalize (boolean) – If True, the regressors will be normalized before regression by subtracting the mean and dividing by the l2-norm. Defaults to False.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family

ModelFamily.LINEAR_MODEL

modifies_features

True

modifies_target

False

name

Elastic Net Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.Estimator(parameters=None, component_obj=None, random_seed=0, **kwargs)[source]

A component that fits and predicts given data.

To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform, fit_transform and other methods in this class if appropriate.

To see some examples, check out the definitions of any Estimator component.

Parameters
  • parameters (dict) – Dictionary of parameters for the component. Defaults to None.

  • component_obj (obj) – Third-party objects useful in component implementation. Defaults to None.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

predict_uses_y

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

name

Returns string name of this component

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

supported_problem_types

Problem types this estimator supports

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

property name(cls)

Returns string name of this component

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)[source]

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

property supported_problem_types(cls)

Problem types this estimator supports

class evalml.pipelines.components.estimators.ExtraTreesClassifier(n_estimators=100, max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=- 1, random_seed=0, **kwargs)[source]

Extra Trees Classifier.

Parameters
  • n_estimators (float) – The number of trees in the forest. Defaults to 100.

  • max_features (int, float or {"auto", "sqrt", "log2"}) –

    The number of features to consider when looking for the best split:

    • If int, then consider max_features features at each split.

    • If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.

    • If “auto”, then max_features=sqrt(n_features).

    • If “sqrt”, then max_features=sqrt(n_features).

    • If “log2”, then max_features=log2(n_features).

    • If None, then max_features = n_features.

    The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. Defaults to “auto”.

  • max_depth (int) – The maximum depth of the tree. Defaults to 6.

  • min_samples_split (int or float) –

    The minimum number of samples required to split an internal node:

    • If int, then consider min_samples_split as the minimum number.

    • If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

  • to 2. (Defaults) –

  • min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“auto”, “sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family

ModelFamily.EXTRA_TREES

modifies_features

True

modifies_target

False

name

Extra Trees Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.ExtraTreesRegressor(n_estimators=100, max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=- 1, random_seed=0, **kwargs)[source]

Extra Trees Regressor.

Parameters
  • n_estimators (float) – The number of trees in the forest. Defaults to 100.

  • max_features (int, float or {"auto", "sqrt", "log2"}) –

    The number of features to consider when looking for the best split:

    • If int, then consider max_features features at each split.

    • If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.

    • If “auto”, then max_features=sqrt(n_features).

    • If “sqrt”, then max_features=sqrt(n_features).

    • If “log2”, then max_features=log2(n_features).

    • If None, then max_features = n_features.

    The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. Defaults to “auto”.

  • max_depth (int) – The maximum depth of the tree. Defaults to 6.

  • min_samples_split (int or float) –

    The minimum number of samples required to split an internal node:

    • If int, then consider min_samples_split as the minimum number.

    • If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

  • to 2. (Defaults) –

  • min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“auto”, “sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family

ModelFamily.EXTRA_TREES

modifies_features

True

modifies_target

False

name

Extra Trees Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, random_seed=0, **kwargs)[source]

K-Nearest Neighbors Classifier.

Parameters
  • n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

  • weights ({‘uniform’, ‘distance’} or callable) –

    Weight function used in prediction. Can be:

    • ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

    • ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.

    • [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

    Defaults to “uniform”.

  • algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) –

    Algorithm used to compute the nearest neighbors:

    • ‘ball_tree’ will use BallTree

    • ‘kd_tree’ will use KDTree

    • ‘brute’ will use a brute-force search.

    ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this parameter, using brute force.

  • leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. Defaults to 30.

  • p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. Defaults to 2.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”, “ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family

ModelFamily.K_NEIGHBORS

modifies_features

True

modifies_target

False

name

KNN Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns array of 0’s matching the input number of features as feature_importance is

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN classifiers.

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.LightGBMClassifier(boosting_type='gbdt', learning_rate=0.1, n_estimators=100, max_depth=0, num_leaves=31, min_child_samples=20, bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1, random_seed=0, **kwargs)[source]

LightGBM Classifier.

Parameters
  • boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random Forest

  • learning_rate (float) – Boosting learning rate. Defaults to 0.1.

  • n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

  • max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to 0.

  • num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

  • min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults to 20.

  • bagging_fraction (float) – LightGBM will randomly select a subset of features on each iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8, LightGBM will select 80% of features before training each tree. This can be used to speed up training and deal with overfitting. Defaults to 0.9.

  • bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

  • n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”], “n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2, 100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bagging_freq”: Integer(0, 1),}

model_family

ModelFamily.LIGHTGBM

modifies_features

True

modifies_target

False

name

LightGBM Classifier

predict_uses_y

False

SEED_MAX

SEED_BOUNDS.max_bound

SEED_MIN

0

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)[source]

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1, n_estimators=20, max_depth=0, num_leaves=31, min_child_samples=20, bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1, random_seed=0, **kwargs)[source]

LightGBM Regressor.

Parameters
  • boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random Forest

  • learning_rate (float) – Boosting learning rate. Defaults to 0.1.

  • n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

  • max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to 0.

  • num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

  • min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults to 20.

  • bagging_fraction (float) – LightGBM will randomly select a subset of features on each iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8, LightGBM will select 80% of features before training each tree. This can be used to speed up training and deal with overfitting. Defaults to 0.9.

  • bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

  • n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”], “n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2, 100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bagging_freq”: Integer(0, 1),}

model_family

ModelFamily.LIGHTGBM

modifies_features

True

modifies_target

False

name

LightGBM Regressor

predict_uses_y

False

SEED_MAX

SEED_BOUNDS.max_bound

SEED_MIN

0

supported_problem_types

[ProblemTypes.REGRESSION]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.LinearRegressor(fit_intercept=True, normalize=False, n_jobs=- 1, random_seed=0, **kwargs)[source]

Linear Regressor.

Parameters
  • fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults to True.

  • normalize (boolean) – If True, the regressors will be normalized before regression by subtracting the mean and dividing by the l2-norm. This parameter is ignored when fit_intercept is set to False. Defaults to False.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “fit_intercept”: [True, False], “normalize”: [True, False]}

model_family

ModelFamily.LINEAR_MODEL

modifies_features

True

modifies_target

False

name

Linear Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.LogisticRegressionClassifier(penalty='l2', C=1.0, multi_class='auto', solver='lbfgs', n_jobs=- 1, random_seed=0, **kwargs)[source]

Logistic Regression Classifier.

Parameters
  • penalty ({"l1", "l2", "elasticnet", "none"}) – The norm used in penalization. Defaults to “l2”.

  • C (float) – Inverse of regularization strength. Must be a positive float. Defaults to 1.0.

  • multi_class ({"auto", "ovr", "multinomial"}) – If the option chosen is “ovr”, then a binary problem is fit for each label. For “multinomial” the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. “multinomial” is unavailable when solver=”liblinear”. “auto” selects “ovr” if the data is binary, or if solver=”liblinear”, and otherwise selects “multinomial”. Defaults to “auto”.

  • solver ({"newton-cg", "lbfgs", "liblinear", "sag", "saga"}) –

    Algorithm to use in the optimization problem. For small datasets, “liblinear” is a good choice, whereas “sag” and “saga” are faster for large ones. For multiclass problems, only “newton-cg”, “sag”, “saga” and “lbfgs” handle multinomial loss; “liblinear” is limited to one-versus-rest schemes.

    • ”newton-cg”, “lbfgs”, “sag” and “saga” handle L2 or no penalty

    • ”liblinear” and “saga” also handle L1 penalty

    • ”saga” also supports “elasticnet” penalty

    • ”liblinear” does not support setting penalty=’none’

    Defaults to “lbfgs”.

  • n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “penalty”: [“l2”], “C”: Real(0.01, 10),}

model_family

ModelFamily.LINEAR_MODEL

modifies_features

True

modifies_target

False

name

Logistic Regression Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.ProphetRegressor(date_column='ds', changepoint_prior_scale=0.05, seasonality_prior_scale=10, holidays_prior_scale=10, seasonality_mode='additive', random_seed=0, stan_backend='CMDSTANPY', **kwargs)[source]

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Attributes

hyperparameter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10), “holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplicative”],}

model_family

ModelFamily.PROPHET

modifies_features

True

modifies_target

False

name

Prophet Regressor

predict_uses_y

False

supported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

Methods

build_prophet_df

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit

Fits component to data

get_params

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

static build_prophet_df(X, y=None, date_column='ds')[source]
clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

get_params(self)[source]
static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X, y=None)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.RandomForestClassifier(n_estimators=100, max_depth=6, n_jobs=- 1, random_seed=0, **kwargs)[source]

Random Forest Classifier.

Parameters
  • n_estimators (float) – The number of trees in the forest. Defaults to 100.

  • max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 10),}

model_family

ModelFamily.RANDOM_FOREST

modifies_features

True

modifies_target

False

name

Random Forest Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.RandomForestRegressor(n_estimators=100, max_depth=6, n_jobs=- 1, random_seed=0, **kwargs)[source]

Random Forest Regressor.

Parameters
  • n_estimators (float) – The number of trees in the forest. Defaults to 100.

  • max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family

ModelFamily.RANDOM_FOREST

modifies_features

True

modifies_target

False

name

Random Forest Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.SVMClassifier(C=1.0, kernel='rbf', gamma='scale', probability=True, random_seed=0, **kwargs)[source]

Support Vector Machine Classifier.

Parameters
  • C (float) – The regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to 1.0.

  • kernel ({"linear", "poly", "rbf", "sigmoid", "precomputed"}) – Specifies the kernel type to be used in the algorithm. Defaults to “rbf”.

  • gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sigmoid”. Defaults to “scale”. - If gamma=’scale’ (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma - if “auto”, uses 1 / n_features

  • probability (boolean) – Whether to enable probability estimates. Defaults to True.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “C”: Real(0, 10), “kernel”: [“linear”, “poly”, “rbf”, “sigmoid”, “precomputed”], “gamma”: [“scale”, “auto”],}

model_family

ModelFamily.SVM

modifies_features

True

modifies_target

False

name

SVM Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Feature importance only works with linear kernels.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Feature importance only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.SVMRegressor(C=1.0, kernel='rbf', gamma='scale', random_seed=0, **kwargs)[source]

Support Vector Machine Regressor.

Parameters
  • C (float) – The regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to 1.0.

  • kernel ({"linear", "poly", "rbf", "sigmoid", "precomputed"}) – Specifies the kernel type to be used in the algorithm. Defaults to “rbf”.

  • gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sigmoid”. Defaults to “scale”. - If gamma=’scale’ (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma - if “auto”, uses 1 / n_features

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “C”: Real(0, 10), “kernel”: [“linear”, “poly”, “rbf”, “sigmoid”, “precomputed”], “gamma”: [“scale”, “auto”],}

model_family

ModelFamily.SVM

modifies_features

True

modifies_target

False

name

SVM Regressor

predict_uses_y

False

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Feature importance only works with linear kernels.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Feature importance only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros

fit(self, X, y=None)

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.TimeSeriesBaselineEstimator(gap=1, random_seed=0, **kwargs)[source]

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
  • gap (int) – Gap between prediction date and target date and must be a positive integer. If gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Time Series Baseline Estimator

predict_uses_y

True

supported_problem_types

[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns

an array of zeroes

Return type

np.ndarray (float)

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X, y=None)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X, y=None)[source]

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.XGBoostClassifier(eta=0.1, max_depth=6, min_child_weight=1, n_estimators=100, random_seed=0, n_jobs=- 1, **kwargs)[source]

XGBoost Classifier.

Parameters
  • eta (float) – Boosting learning rate. Defaults to 0.1.

  • max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

  • min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a child. Defaults to 1.0

  • n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

  • n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to -1.

Attributes

hyperparameter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10), “n_estimators”: Integer(1, 1000),}

model_family

ModelFamily.XGBOOST

modifies_features

True

modifies_target

False

name

XGBoost Classifier

predict_uses_y

False

SEED_MAX

None

SEED_MIN

None

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)[source]

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

class evalml.pipelines.components.estimators.XGBoostRegressor(eta=0.1, max_depth=6, min_child_weight=1, n_estimators=100, random_seed=0, n_jobs=- 1, **kwargs)[source]

XGBoost Regressor.

Parameters
  • eta (float) – Boosting learning rate. Defaults to 0.1.

  • max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

  • min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a child. Defaults to 1.0

  • n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

  • n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to -1.

Attributes

hyperparameter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10), “n_estimators”: Integer(1, 1000),}

model_family

ModelFamily.XGBOOST

modifies_features

True

modifies_target

False

name

XGBoost Regressor

predict_uses_y

False

SEED_MAX

None

SEED_MIN

None

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

feature_importance

Returns importance associated with each feature.

fit

Fits component to data

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

property feature_importance(self)

Returns importance associated with each feature.

Returns

Importance associated with each feature

Return type

np.ndarray

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

predict(self, X)[source]

Make predictions using selected features.

Parameters

X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]

Returns

Predicted values

Return type

pd.Series

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame, or np.ndarray) – Features

Returns

Probability estimates

Return type

pd.Series

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None