featuretools

Module Contents

Classes Summary

DFSTransformer

Featuretools DFS component that generates features for the input features.

Contents

class evalml.pipelines.components.transformers.preprocessing.featuretools.DFSTransformer(index='index', random_seed=0, **kwargs)[source]

Featuretools DFS component that generates features for the input features.

Parameters
  • index (string) – The name of the column that contains the indices. If no column with this name exists, then featuretools.EntitySet() creates a column with this name to serve as the index column. Defaults to ‘index’.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

DFS Transformer

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits the DFSTransformer Transformer component.

fit_transform

Fits on X and transforms X

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Computes the feature matrix for the input X using featuretools’ dfs algorithm.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits the DFSTransformer Transformer component.

Parameters
  • X (pd.DataFrame, np.array) – The input data to transform, of shape [n_samples, n_features]

  • y (pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Computes the feature matrix for the input X using featuretools’ dfs algorithm.

Parameters
  • X (pd.DataFrame or np.ndarray) – The input training data to transform. Has shape [n_samples, n_features]

  • y (pd.Series, optional) – Ignored.

Returns

Feature matrix

Return type

pd.DataFrame