transformer¶
Module Contents¶
Classes Summary¶
A component that transforms the target. |
|
A component that may or may not need fitting that transforms data. |
Contents¶
-
class
evalml.pipelines.components.transformers.transformer.
TargetTransformer
(parameters=None, component_obj=None, random_seed=0, **kwargs)[source]¶ A component that transforms the target.
Attributes
model_family
ModelFamily.NONE
modifies_features
False
modifies_target
True
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters
Fits component to data
Fits on X and transforms X
Inverts the transformation done by the transform method.
Loads component at file path
Returns string name of this component
Returns boolean determining if component needs fitting before
Returns the parameters which were used to initialize the component
Saves component at file path
Transforms data X.
-
clone
(self)¶ Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
-
default_parameters
(cls)¶ Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
default parameters for this component.
- Return type
dict
-
describe
(self, print_name=False, return_dict=False)¶ Describe a component and its parameters
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
prints and returns dictionary
- Return type
None or dict
-
fit
(self, X, y=None)¶ Fits component to data
- Parameters
X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]
y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]
- Returns
self
-
fit_transform
(self, X, y=None)¶ Fits on X and transforms X
- Parameters
X (pd.DataFrame) – Data to fit and transform
y (pd.Series) – Target data
- Returns
Transformed X
- Return type
pd.DataFrame
-
abstract
inverse_transform
(self, y)[source]¶ Inverts the transformation done by the transform method.
- Arguments:
y (pd.Series): Target transformed by this component.
- Returns
Target without the transformation.
- Return type
pd.Seriesø
-
static
load
(file_path)¶ Loads component at file path
- Parameters
file_path (str) – Location to load file
- Returns
ComponentBase object
-
property
name
(cls)¶ Returns string name of this component
-
needs_fitting
(self)¶ Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
-
property
parameters
(self)¶ Returns the parameters which were used to initialize the component
-
save
(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)¶ Saves component at file path
- Parameters
file_path (str) – Location to save file
pickle_protocol (int) – The pickle data stream format.
- Returns
None
-
transform
(self, X, y=None)¶ Transforms data X.
- Parameters
X (pd.DataFrame) – Data to transform.
y (pd.Series, optional) – Target data.
- Returns
Transformed X
- Return type
pd.DataFrame
-
-
class
evalml.pipelines.components.transformers.transformer.
Transformer
(parameters=None, component_obj=None, random_seed=0, **kwargs)[source]¶ A component that may or may not need fitting that transforms data. These components are used before an estimator.
To implement a new Transformer, define your own class which is a subclass of Transformer, including a name and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define an __init__ method which sets up any necessary state and objects. Make sure your __init__ only uses standard keyword arguments and calls super().__init__() with a parameters dict. You may also override the fit, transform, fit_transform and other methods in this class if appropriate.
To see some examples, check out the definitions of any Transformer component.
- Parameters
parameters (dict) – Dictionary of parameters for the component. Defaults to None.
component_obj (obj) – Third-party objects useful in component implementation. Defaults to None.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
model_family
ModelFamily.NONE
modifies_features
True
modifies_target
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters
Fits component to data
Fits on X and transforms X
Loads component at file path
Returns string name of this component
Returns boolean determining if component needs fitting before
Returns the parameters which were used to initialize the component
Saves component at file path
Transforms data X.
-
clone
(self)¶ Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
-
default_parameters
(cls)¶ Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
default parameters for this component.
- Return type
dict
-
describe
(self, print_name=False, return_dict=False)¶ Describe a component and its parameters
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
prints and returns dictionary
- Return type
None or dict
-
fit
(self, X, y=None)¶ Fits component to data
- Parameters
X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]
y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]
- Returns
self
-
fit_transform
(self, X, y=None)[source]¶ Fits on X and transforms X
- Parameters
X (pd.DataFrame) – Data to fit and transform
y (pd.Series) – Target data
- Returns
Transformed X
- Return type
pd.DataFrame
-
static
load
(file_path)¶ Loads component at file path
- Parameters
file_path (str) – Location to load file
- Returns
ComponentBase object
-
property
name
(cls)¶ Returns string name of this component
-
needs_fitting
(self)¶ Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
-
property
parameters
(self)¶ Returns the parameters which were used to initialize the component
-
save
(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)¶ Saves component at file path
- Parameters
file_path (str) – Location to save file
pickle_protocol (int) – The pickle data stream format.
- Returns
None