Source code for evalml.data_checks.multicollinearity_data_check

from evalml.data_checks import (
    DataCheck,
    DataCheckMessageCode,
    DataCheckWarning,
)
from evalml.utils import infer_feature_types


[docs]class MulticollinearityDataCheck(DataCheck): """Check if any set features are likely to be multicollinear. Arguments: threshold (float): The threshold to be considered. Defaults to 0.9. """ def __init__(self, threshold=0.9): if threshold < 0 or threshold > 1: raise ValueError("threshold must be a float between 0 and 1, inclusive.") self.threshold = threshold
[docs] def validate(self, X, y=None): """Check if any set of features are likely to be multicollinear. Arguments: X (pd.DataFrame, np.ndarray): The input features to check Returns: dict: dict with a DataCheckWarning if there are any potentially multicollinear columns. """ results = {"warnings": [], "errors": [], "actions": []} X = infer_feature_types(X) mutual_info_df = X.ww.mutual_information() if mutual_info_df.empty: return results above_threshold = mutual_info_df.loc[ mutual_info_df["mutual_info"] >= self.threshold ] correlated_cols = [ (col_1, col_2) for col_1, col_2 in zip( above_threshold["column_1"], above_threshold["column_2"] ) ] if correlated_cols: warning_msg = "Columns are likely to be correlated: {}" results["warnings"].append( DataCheckWarning( message=warning_msg.format(correlated_cols), data_check_name=self.name, message_code=DataCheckMessageCode.IS_MULTICOLLINEAR, details={"columns": correlated_cols}, ).to_dict() ) return results