Source code for evalml.pipelines.components.transformers.preprocessing.featuretools
from featuretools import EntitySet, calculate_feature_matrix, dfs
from evalml.pipelines.components.transformers.transformer import Transformer
from evalml.utils import (
_retain_custom_types_and_initalize_woodwork,
infer_feature_types,
)
[docs]class DFSTransformer(Transformer):
"""Featuretools DFS component that generates features for the input features.
Arguments:
index (string): The name of the column that contains the indices. If no column with this name exists,
then featuretools.EntitySet() creates a column with this name to serve as the index column. Defaults to 'index'.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
name = "DFS Transformer"
hyperparameter_ranges = {}
"""{}"""
def __init__(self, index="index", random_seed=0, **kwargs):
parameters = {"index": index}
if not isinstance(index, str):
raise TypeError(f"Index provided must be string, got {type(index)}")
self.index = index
self.features = None
parameters.update(kwargs)
super().__init__(parameters=parameters, random_seed=random_seed)
def _make_entity_set(self, X):
"""Helper method that creates and returns the entity set given the input data"""
ft_es = EntitySet()
if self.index not in X.columns:
es = ft_es.entity_from_dataframe(
entity_id="X", dataframe=X, index=self.index, make_index=True
)
else:
es = ft_es.entity_from_dataframe(
entity_id="X", dataframe=X, index=self.index
)
return es
[docs] def fit(self, X, y=None):
"""Fits the DFSTransformer Transformer component.
Arguments:
X (pd.DataFrame, np.array): The input data to transform, of shape [n_samples, n_features]
y (pd.Series, np.ndarray, optional): The target training data of length [n_samples]
Returns:
self
"""
X_ww = infer_feature_types(X)
X_ww = X_ww.ww.rename({col: str(col) for col in X_ww.columns})
es = self._make_entity_set(X_ww)
self.features = dfs(
entityset=es, target_entity="X", features_only=True, max_depth=1
)
return self
[docs] def transform(self, X, y=None):
"""Computes the feature matrix for the input X using featuretools' dfs algorithm.
Arguments:
X (pd.DataFrame or np.ndarray): The input training data to transform. Has shape [n_samples, n_features]
y (pd.Series, optional): Ignored.
Returns:
pd.DataFrame: Feature matrix
"""
X_ww = infer_feature_types(X)
X_ww = X_ww.ww.rename({col: str(col) for col in X_ww.columns})
es = self._make_entity_set(X_ww)
feature_matrix = calculate_feature_matrix(features=self.features, entityset=es)
return _retain_custom_types_and_initalize_woodwork(
X_ww.ww.logical_types, feature_matrix
)