from evalml.data_checks import DataCheck, DataCheckError, DataCheckMessageCode
from evalml.utils.woodwork_utils import infer_feature_types
error_contains_nan = "Input datetime column(s) ({}) contains NaN values. Please impute NaN values or drop these rows or columns."
[docs]class DateTimeNaNDataCheck(DataCheck):
"""Checks each column in the input for datetime features and will issue an error if NaN values are present."""
[docs] def validate(self, X, y=None):
"""Checks if any datetime columns contain NaN values.
Arguments:
X (pd.DataFrame, np.ndarray): Features.
y (pd.Series, np.ndarray): Ignored. Defaults to None.
Returns:
dict: dict with a DataCheckError if NaN values are present in datetime columns.
Example:
>>> import pandas as pd
>>> import woodwork as ww
>>> import numpy as np
>>> dates = np.arange(np.datetime64('2017-01-01'), np.datetime64('2017-01-08'))
>>> dates[0] = np.datetime64('NaT')
>>> df = pd.DataFrame(dates, columns=['index'])
>>> df.ww.init()
>>> dt_nan_check = DateTimeNaNDataCheck()
>>> assert dt_nan_check.validate(df) == {"warnings": [],
... "actions": [],
... "errors": [DataCheckError(message='Input datetime column(s) (index) contains NaN values. Please impute NaN values or drop these rows or columns.',
... data_check_name=DateTimeNaNDataCheck.name,
... message_code=DataCheckMessageCode.DATETIME_HAS_NAN,
... details={"columns": 'index'}).to_dict()]}
"""
results = {"warnings": [], "errors": [], "actions": []}
X = infer_feature_types(X)
datetime_cols = X.ww.select("datetime")
nan_columns = datetime_cols.columns[datetime_cols.isna().any()].tolist()
if len(nan_columns) > 0:
nan_columns = [str(col) for col in nan_columns]
cols_str = (
", ".join(nan_columns) if len(nan_columns) > 1 else nan_columns[0]
)
results["errors"].append(
DataCheckError(
message=error_contains_nan.format(cols_str),
data_check_name=self.name,
message_code=DataCheckMessageCode.DATETIME_HAS_NAN,
details={"columns": cols_str},
).to_dict()
)
return results