from sklearn.ensemble import StackingRegressor
from sklearn.model_selection import KFold
from evalml.model_family import ModelFamily
from evalml.pipelines.components import LinearRegressor
from evalml.pipelines.components.ensemble import SklearnStackedEnsembleBase
from evalml.problem_types import ProblemTypes
[docs]class SklearnStackedEnsembleRegressor(SklearnStackedEnsembleBase):
"""Scikit-learn Stacked Ensemble Regressor.
Arguments:
input_pipelines (list(PipelineBase or subclass obj)): List of pipeline instances to use as the base estimators.
This must not be None or an empty list or else EnsembleMissingPipelinesError will be raised.
final_estimator (Estimator or subclass): The regressor used to combine the base estimators. If None, uses LinearRegressor.
cv (int, cross-validation generator or an iterable): Determines the cross-validation splitting strategy used to train final_estimator.
For int/None inputs, KFold is used. Defaults to None.
Possible inputs for cv are:
- None: 3-fold cross validation
- int: the number of folds in a (Stratified) KFold
- An scikit-learn cross-validation generator object
- An iterable yielding (train, test) splits
n_jobs (int or None): Non-negative integer describing level of parallelism used for pipelines.
None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used.
Defaults to -1.
- Note: there could be some multi-process errors thrown for values of `n_jobs != 1`. If this is the case, please use `n_jobs = 1`.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
name = "Sklearn Stacked Ensemble Regressor"
model_family = ModelFamily.ENSEMBLE
"""ModelFamily.ENSEMBLE"""
supported_problem_types = [
ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,
]
"""[
ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,
]"""
hyperparameter_ranges = {}
"""{}"""
_stacking_estimator_class = StackingRegressor
_default_final_estimator = LinearRegressor
_default_cv = KFold