datetime_featurizer

Module Contents

Classes Summary

DateTimeFeaturizer

Transformer that can automatically extract features from datetime columns.

Contents

class evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer(features_to_extract=None, encode_as_categories=False, date_index=None, random_seed=0, **kwargs)[source]

Transformer that can automatically extract features from datetime columns.

Parameters
  • features_to_extract (list) – List of features to extract. Valid options include “year”, “month”, “day_of_week”, “hour”. Defaults to None.

  • encode_as_categories (bool) – Whether day-of-week and month features should be encoded as pandas “category” dtype. This allows OneHotEncoders to encode these features. Defaults to False.

  • date_index (str) – Name of the column containing the datetime information used to order the data. Ignored.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.NONE

modifies_features

True

modifies_target

False

name

DateTime Featurization Component

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters

fit

Fits component to data

fit_transform

Fits on X and transforms X

get_feature_names

Gets the categories of each datetime feature.

load

Loads component at file path

needs_fitting

Returns boolean determining if component needs fitting before

parameters

Returns the parameters which were used to initialize the component

save

Saves component at file path

transform

Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

prints and returns dictionary

Return type

None or dict

fit(self, X, y=None)[source]

Fits component to data

Parameters
  • X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]

  • y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X

Parameters
  • X (pd.DataFrame) – Data to fit and transform

  • y (pd.Series) – Target data

Returns

Transformed X

Return type

pd.DataFrame

get_feature_names(self)[source]

Gets the categories of each datetime feature.

Returns

Dictionary, where each key-value pair is a column name and a dictionary mapping the unique feature values to their integer encoding.

static load(file_path)

Loads component at file path

Parameters

file_path (str) – Location to load file

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

property parameters(self)

Returns the parameters which were used to initialize the component

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path

Parameters
  • file_path (str) – Location to save file

  • pickle_protocol (int) – The pickle data stream format.

Returns

None

transform(self, X, y=None)[source]

Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns

Parameters
  • X (pd.DataFrame) – Data to transform

  • y (pd.Series, optional) – Ignored.

Returns

Transformed X

Return type

pd.DataFrame