simple_imputer¶
Module Contents¶
Classes Summary¶
Imputes missing data according to a specified imputation strategy. |
Contents¶
-
class
evalml.pipelines.components.transformers.imputers.simple_imputer.
SimpleImputer
(impute_strategy='most_frequent', fill_value=None, random_seed=0, **kwargs)[source]¶ Imputes missing data according to a specified imputation strategy.
- Parameters
impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “median”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for object data types.
fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace missing data. Defaults to 0 when imputing numerical data and “missing_value” for strings or object data types.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}
model_family
ModelFamily.NONE
modifies_features
True
modifies_target
False
name
Simple Imputer
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are
Fits on X and transforms X
Loads component at file path
Returns boolean determining if component needs fitting before
Returns the parameters which were used to initialize the component
Saves component at file path
Transforms input by imputing missing values. ‘None’ and np.nan values are treated as the same.
-
clone
(self)¶ Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
-
default_parameters
(cls)¶ Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
default parameters for this component.
- Return type
dict
-
describe
(self, print_name=False, return_dict=False)¶ Describe a component and its parameters
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
prints and returns dictionary
- Return type
None or dict
-
fit
(self, X, y=None)[source]¶ - Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are
treated as the same.
- Parameters
X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples, n_features]
y (pd.Series, optional) – the target training data of length [n_samples]
- Returns
self
-
fit_transform
(self, X, y=None)[source]¶ Fits on X and transforms X
- Parameters
X (pd.DataFrame) – Data to fit and transform
y (pd.Series, optional) – Target data.
- Returns
Transformed X
- Return type
pd.DataFrame
-
static
load
(file_path)¶ Loads component at file path
- Parameters
file_path (str) – Location to load file
- Returns
ComponentBase object
-
needs_fitting
(self)¶ Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
-
property
parameters
(self)¶ Returns the parameters which were used to initialize the component
-
save
(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)¶ Saves component at file path
- Parameters
file_path (str) – Location to save file
pickle_protocol (int) – The pickle data stream format.
- Returns
None