sklearn_stacked_ensemble_classifier¶
Module Contents¶
Classes Summary¶
Scikit-learn Stacked Ensemble Classifier. |
Contents¶
-
class
evalml.pipelines.components.ensemble.sklearn_stacked_ensemble_classifier.
SklearnStackedEnsembleClassifier
(input_pipelines=None, final_estimator=None, cv=None, n_jobs=- 1, random_seed=0, **kwargs)[source]¶ Scikit-learn Stacked Ensemble Classifier.
- Parameters
input_pipelines (list(PipelineBase or subclass obj)) – List of pipeline instances to use as the base estimators. This must not be None or an empty list or else EnsembleMissingPipelinesError will be raised.
final_estimator (Estimator or subclass) – The classifier used to combine the base estimators. If None, uses LogisticRegressionClassifier.
cv (int, cross-validation generator or an iterable) –
Determines the cross-validation splitting strategy used to train final_estimator. For int/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. Defaults to None. Possible inputs for cv are:
None: 3-fold cross validation
int: the number of folds in a (Stratified) KFold
An scikit-learn cross-validation generator object
An iterable yielding (train, test) splits
n_jobs (int or None) – Non-negative integer describing level of parallelism used for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown for values of n_jobs != 1. If this is the case, please use n_jobs = 1.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{}
model_family
ModelFamily.ENSEMBLE
modifies_features
True
modifies_target
False
name
Sklearn Stacked Ensemble Classifier
predict_uses_y
False
supported_problem_types
[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for stacked ensemble classes.
Describe a component and its parameters
Not implemented for SklearnStackedEnsembleClassifier and SklearnStackedEnsembleRegressor
Fits component to data
Loads component at file path
Returns boolean determining if component needs fitting before
Returns the parameters which were used to initialize the component
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-
clone
(self)¶ Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
-
default_parameters
(cls)¶ Returns the default parameters for stacked ensemble classes.
- Returns
default parameters for this component.
- Return type
dict
-
describe
(self, print_name=False, return_dict=False)¶ Describe a component and its parameters
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
prints and returns dictionary
- Return type
None or dict
-
property
feature_importance
(self)¶ Not implemented for SklearnStackedEnsembleClassifier and SklearnStackedEnsembleRegressor
-
fit
(self, X, y=None)¶ Fits component to data
- Parameters
X (list, pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]
y (list, pd.Series, np.ndarray, optional) – The target training data of length [n_samples]
- Returns
self
-
static
load
(file_path)¶ Loads component at file path
- Parameters
file_path (str) – Location to load file
- Returns
ComponentBase object
-
needs_fitting
(self)¶ Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
-
property
parameters
(self)¶ Returns the parameters which were used to initialize the component
-
predict
(self, X)¶ Make predictions using selected features.
- Parameters
X (pd.DataFrame, np.ndarray) – Data of shape [n_samples, n_features]
- Returns
Predicted values
- Return type
pd.Series
-
predict_proba
(self, X)¶ Make probability estimates for labels.
- Parameters
X (pd.DataFrame, or np.ndarray) – Features
- Returns
Probability estimates
- Return type
pd.Series
-
save
(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)¶ Saves component at file path
- Parameters
file_path (str) – Location to save file
pickle_protocol (int) – The pickle data stream format.
- Returns
None