Source code for evalml.pipelines.components.transformers.encoders.label_encoder
"""A transformer that encodes target labels using values between 0 and num_classes - 1."""
import pandas as pd
import woodwork as ww
from sklearn.preprocessing import LabelEncoder as SKLabelEncoder
from ..transformer import Transformer
from evalml.utils import infer_feature_types
[docs]class LabelEncoder(Transformer):
"""A transformer that encodes target labels using values between 0 and num_classes - 1.
Args:
random_seed (int): Seed for the random number generator. Defaults to 0. Ignored.
"""
name = "Label Encoder"
hyperparameter_ranges = {}
"""{}"""
modifies_features = False
modifies_target = True
def __init__(self, random_seed=0, **kwargs):
parameters = {}
parameters.update(kwargs)
label_encoder_obj = SKLabelEncoder()
super().__init__(
parameters=parameters,
component_obj=label_encoder_obj,
random_seed=random_seed,
)
[docs] def fit(self, X, y):
"""Fits the label encoder.
Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features]. Ignored.
y (pd.Series): The target training data of length [n_samples].
Returns:
self
Raises:
ValueError: If input `y` is None.
"""
if y is None:
raise ValueError("y cannot be None!")
self._component_obj.fit(y)
return self
[docs] def transform(self, X, y=None):
"""Transform the target using the fitted label encoder.
Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features]. Ignored.
y (pd.Series): The target training data of length [n_samples].
Returns:
pd.DataFrame, pd.Series: The original features and an encoded version of the target.
Raises:
ValueError: If input `y` is None.
"""
if y is None:
raise ValueError("y cannot be None!")
y_ww = infer_feature_types(y)
y_t = self._component_obj.transform(y_ww)
y_t = pd.Series(y_t, index=y_ww.index)
return X, ww.init_series(y_t)
[docs] def fit_transform(self, X, y):
"""Fit and transform data using the label encoder.
Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features].
y (pd.Series): The target training data of length [n_samples].
Returns:
pd.DataFrame, pd.Series: The original features and an encoded version of the target.
"""
return self.fit(X, y).transform(X, y)
[docs] def inverse_transform(self, y):
"""Decodes the target data.
Args:
y (pd.Series): Target data.
Returns:
pd.Series: The decoded version of the target.
Raises:
ValueError: If input `y` is None.
"""
if y is None:
raise ValueError("y cannot be None!")
y_it = self._component_obj.inverse_transform(y)
return ww.init_series(y_it)