Source code for evalml.data_checks.datetime_nan_data_check

"""Data check that checks each column in the input for datetime features and will issue an error if NaN values are present."""

from evalml.data_checks import DataCheck, DataCheckError, DataCheckMessageCode
from evalml.utils.woodwork_utils import infer_feature_types

error_contains_nan = "Input datetime column(s) ({}) contains NaN values. Please impute NaN values or drop these rows or columns."


[docs]class DateTimeNaNDataCheck(DataCheck): """Check each column in the input for datetime features and will issue an error if NaN values are present."""
[docs] def validate(self, X, y=None): """Check if any datetime columns contain NaN values. Args: X (pd.DataFrame, np.ndarray): Features. y (pd.Series, np.ndarray): Ignored. Defaults to None. Returns: dict: dict with a DataCheckError if NaN values are present in datetime columns. Example: >>> import pandas as pd >>> import woodwork as ww >>> import numpy as np >>> dates = np.arange(np.datetime64('2017-01-01'), np.datetime64('2017-01-08')) >>> dates[0] = np.datetime64('NaT') >>> df = pd.DataFrame(dates, columns=['index']) >>> df.ww.init() >>> dt_nan_check = DateTimeNaNDataCheck() >>> assert dt_nan_check.validate(df) == {"warnings": [], ... "actions": [], ... "errors": [DataCheckError(message='Input datetime column(s) (index) contains NaN values. Please impute NaN values or drop these rows or columns.', ... data_check_name=DateTimeNaNDataCheck.name, ... message_code=DataCheckMessageCode.DATETIME_HAS_NAN, ... details={"columns": ['index'], "rows": None}).to_dict()]} """ results = {"warnings": [], "errors": [], "actions": []} X = infer_feature_types(X) datetime_cols = X.ww.select("datetime") nan_columns = datetime_cols.columns[datetime_cols.isna().any()].tolist() if len(nan_columns) > 0: nan_columns = [str(col) for col in nan_columns] cols_str = ( ", ".join(nan_columns) if len(nan_columns) > 1 else nan_columns[0] ) results["errors"].append( DataCheckError( message=error_contains_nan.format(cols_str), data_check_name=self.name, message_code=DataCheckMessageCode.DATETIME_HAS_NAN, details={"columns": nan_columns}, ).to_dict() ) return results