Source code for evalml.data_checks.invalid_targets_data_check

"""Data check that checks if the target data contains missing or invalid values."""
import woodwork as ww

from evalml.data_checks import (
    DataCheck,
    DataCheckAction,
    DataCheckActionCode,
    DataCheckError,
    DataCheckMessageCode,
    DataCheckWarning,
)
from evalml.objectives import get_objective
from evalml.problem_types import (
    ProblemTypes,
    handle_problem_types,
    is_binary,
    is_multiclass,
    is_regression,
)
from evalml.utils.woodwork_utils import (
    infer_feature_types,
    numeric_and_boolean_ww,
)


[docs]class InvalidTargetDataCheck(DataCheck): """Check if the target data contains missing or invalid values. Args: problem_type (str or ProblemTypes): The specific problem type to data check for. e.g. 'binary', 'multiclass', 'regression, 'time series regression' objective (str or ObjectiveBase): Name or instance of the objective class. n_unique (int): Number of unique target values to store when problem type is binary and target incorrectly has more than 2 unique values. Non-negative integer. If None, stores all unique values. Defaults to 100. """ multiclass_continuous_threshold = 0.05 def __init__(self, problem_type, objective, n_unique=100): self.problem_type = handle_problem_types(problem_type) self.objective = get_objective(objective) if n_unique is not None and n_unique <= 0: raise ValueError("`n_unique` must be a non-negative integer value.") self.n_unique = n_unique
[docs] def validate(self, X, y): """Check if the target data contains missing or invalid values. Args: X (pd.DataFrame, np.ndarray): Features. Ignored. y (pd.Series, np.ndarray): Target data to check for invalid values. Returns: dict (DataCheckError): List with DataCheckErrors if any invalid values are found in the target data. Example: >>> import pandas as pd >>> X = pd.DataFrame({"col": [1, 2, 3, 1]}) >>> y = pd.Series([0, 1, None, None]) >>> target_check = InvalidTargetDataCheck('binary', 'Log Loss Binary') >>> assert target_check.validate(X, y) == { ... "errors": [{"message": "2 row(s) (50.0%) of target values are null", ... "data_check_name": "InvalidTargetDataCheck", ... "level": "error", ... "code": "TARGET_HAS_NULL", ... "details": {"num_null_rows": 2, "pct_null_rows": 50, "rows": None, "columns": None}}], ... "warnings": [], ... "actions": [{"code": "IMPUTE_COL", "metadata": {"impute_strategy": "most_frequent", "is_target": True, "rows": None, "columns": None}}]} """ results = {"warnings": [], "errors": [], "actions": []} if y is None: results["errors"].append( DataCheckError( message="Target is None", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_IS_NONE, details={}, ).to_dict() ) return results y = infer_feature_types(y) is_supported_type = y.ww.logical_type.type_string in numeric_and_boolean_ww + [ ww.logical_types.Categorical.type_string, ] if not is_supported_type: results["errors"].append( DataCheckError( message="Target is unsupported {} type. Valid Woodwork logical types include: {}".format( type(y.ww.logical_type), ", ".join([ltype for ltype in numeric_and_boolean_ww]), ), data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_UNSUPPORTED_TYPE, details={"unsupported_type": y.ww.logical_type.type_string}, ).to_dict() ) null_rows = y.isnull() if null_rows.all(): results["errors"].append( DataCheckError( message="Target is either empty or fully null.", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_IS_EMPTY_OR_FULLY_NULL, details={}, ).to_dict() ) return results elif null_rows.any(): num_null_rows = null_rows.sum() pct_null_rows = null_rows.mean() * 100 results["errors"].append( DataCheckError( message="{} row(s) ({}%) of target values are null".format( num_null_rows, pct_null_rows ), data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_HAS_NULL, details={ "num_null_rows": num_null_rows, "pct_null_rows": pct_null_rows, }, ).to_dict() ) impute_strategy = ( "mean" if is_regression(self.problem_type) else "most_frequent" ) results["actions"].append( DataCheckAction( DataCheckActionCode.IMPUTE_COL, metadata={ "is_target": True, "impute_strategy": impute_strategy, }, ).to_dict() ) value_counts = y.value_counts() unique_values = value_counts.index.tolist() if is_binary(self.problem_type) and len(value_counts) != 2: if self.n_unique is None: details = {"target_values": unique_values} else: details = { "target_values": unique_values[ : min(self.n_unique, len(unique_values)) ] } results["errors"].append( DataCheckError( message="Binary class targets require exactly two unique values.", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_BINARY_NOT_TWO_UNIQUE_VALUES, details=details, ).to_dict() ) if ( self.problem_type == ProblemTypes.REGRESSION and "numeric" not in y.ww.semantic_tags ): results["errors"].append( DataCheckError( message="Target data type should be numeric for regression type problems.", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_UNSUPPORTED_TYPE, details={}, ).to_dict() ) if is_multiclass(self.problem_type): if value_counts.min() <= 1: least_populated = value_counts[value_counts <= 1] details = { "least_populated_class_labels": sorted( least_populated.index.tolist() ) } results["errors"].append( DataCheckError( message="Target does not have at least two instances per class which is required for multiclass classification", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS, details=details, ).to_dict() ) if len(unique_values) <= 2: details = {"num_classes": len(unique_values)} results["errors"].append( DataCheckError( message="Target has two or less classes, which is too few for multiclass problems. Consider changing to binary.", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_MULTICLASS_NOT_ENOUGH_CLASSES, details=details, ).to_dict() ) num_class_to_num_value_ratio = len(unique_values) / len(y) if num_class_to_num_value_ratio >= self.multiclass_continuous_threshold: details = {"class_to_value_ratio": num_class_to_num_value_ratio} results["warnings"].append( DataCheckWarning( message="Target has a large number of unique values, could be regression type problem.", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_MULTICLASS_HIGH_UNIQUE_CLASS, details=details, ).to_dict() ) any_neg = ( not (y > 0).all() if y.ww.logical_type.type_string in [ ww.logical_types.Integer.type_string, ww.logical_types.Double.type_string, ] else None ) if any_neg and self.objective.positive_only: details = { "Count of offending values": sum(val <= 0 for val in y.values.flatten()) } results["errors"].append( DataCheckError( message=f"Target has non-positive values which is not supported for {self.objective.name}", data_check_name=self.name, message_code=DataCheckMessageCode.TARGET_INCOMPATIBLE_OBJECTIVE, details=details, ).to_dict() ) if X is not None: X = infer_feature_types(X) X_index = list(X.index) y_index = list(y.index) X_length = len(X_index) y_length = len(y_index) if X_length != y_length: results["warnings"].append( DataCheckWarning( message="Input target and features have different lengths", data_check_name=self.name, message_code=DataCheckMessageCode.MISMATCHED_LENGTHS, details={ "features_length": X_length, "target_length": y_length, }, ).to_dict() ) if X_index != y_index: if set(X_index) == set(y_index): results["warnings"].append( DataCheckWarning( message="Input target and features have mismatched indices order", data_check_name=self.name, message_code=DataCheckMessageCode.MISMATCHED_INDICES_ORDER, details={}, ).to_dict() ) else: index_diff_not_in_X = list(set(y_index) - set(X_index))[:10] index_diff_not_in_y = list(set(X_index) - set(y_index))[:10] results["warnings"].append( DataCheckWarning( message="Input target and features have mismatched indices", data_check_name=self.name, message_code=DataCheckMessageCode.MISMATCHED_INDICES, details={ "indices_not_in_features": index_diff_not_in_X, "indices_not_in_target": index_diff_not_in_y, }, ).to_dict() ) return results