highly_null_data_check¶
Data check that checks if there are any highly-null columns and rows in the input.
Module Contents¶
Classes Summary¶
Check if there are any highly-null columns and rows in the input. |
Contents¶
-
class
evalml.data_checks.highly_null_data_check.
HighlyNullDataCheck
(pct_null_col_threshold=0.95, pct_null_row_threshold=0.95)[source]¶ Check if there are any highly-null columns and rows in the input.
- Parameters
pct_null_col_threshold (float) – If the percentage of NaN values in an input feature exceeds this amount, that column will be considered highly-null. Defaults to 0.95.
pct_null_row_threshold (float) – If the percentage of NaN values in an input row exceeds this amount, that row will be considered highly-null. Defaults to 0.95.
Methods
Return a name describing the data check.
Check if there are any highly-null columns or rows in the input.
-
name
(cls)¶ Return a name describing the data check.
-
validate
(self, X, y=None)[source]¶ Check if there are any highly-null columns or rows in the input.
- Parameters
X (pd.DataFrame, np.ndarray) – Features.
y (pd.Series, np.ndarray) – Ignored. Defaults to None.
- Returns
dict with a DataCheckWarning if there are any highly-null columns or rows.
- Return type
dict
Example
>>> import pandas as pd >>> class SeriesWrap(): ... def __init__(self, series): ... self.series = series ... ... def __eq__(self, series_2): ... return all(self.series.eq(series_2.series)) ... >>> df = pd.DataFrame({ ... 'lots_of_null': [None, None, None, None, 5], ... 'no_null': [1, 2, 3, 4, 5] ... }) >>> null_check = HighlyNullDataCheck(pct_null_col_threshold=0.50, pct_null_row_threshold=0.50) >>> validation_results = null_check.validate(df) >>> validation_results['warnings'][0]['details']['pct_null_cols'] = SeriesWrap(validation_results['warnings'][0]['details']['pct_null_cols']) >>> highly_null_rows = SeriesWrap(pd.Series([0.5, 0.5, 0.5, 0.5])) >>> assert validation_results == { ... "errors": [], ... "warnings": [{"message": "4 out of 5 rows are more than 50.0% null", ... "data_check_name": "HighlyNullDataCheck", ... "level": "warning", ... "code": "HIGHLY_NULL_ROWS", ... "details": {"pct_null_cols": highly_null_rows, "columns": None, "rows": [0, 1, 2, 3]}}, ... {"message": "Columns 'lots_of_null' are 50.0% or more null", ... "data_check_name": "HighlyNullDataCheck", ... "level": "warning", ... "code": "HIGHLY_NULL_COLS", ... "details": {"columns": ["lots_of_null"], "pct_null_rows": {"lots_of_null": 0.8}, "null_row_indices": {"lots_of_null": [0, 1, 2, 3]}, "rows": None}}], ... "actions": [{"code": "DROP_ROWS", "metadata": {"rows": [0, 1, 2, 3], "columns": None}}, ... {"code": "DROP_COL", "metadata": {"columns": ["lots_of_null"], "rows": None}}]}