"""Woodwork utility methods."""
import numpy as np
import pandas as pd
import woodwork as ww
from woodwork.logical_types import Unknown
from evalml.utils.gen_utils import is_all_numeric
numeric_and_boolean_ww = [
ww.logical_types.Integer.type_string,
ww.logical_types.Double.type_string,
ww.logical_types.Boolean.type_string,
]
def _numpy_to_pandas(array):
if len(array.shape) == 1:
data = pd.Series(array)
else:
data = pd.DataFrame(array)
return data
def _list_to_pandas(list):
return _numpy_to_pandas(np.array(list))
_nullable_types = {"Int64", "Float64", "boolean"}
def _raise_value_error_if_nullable_types_detected(data):
types = {data.name: data.dtype} if isinstance(data, pd.Series) else data.dtypes
cols_with_nullable_types = {
col: str(ptype)
for col, ptype in dict(types).items()
if str(ptype) in _nullable_types
}
if cols_with_nullable_types:
raise ValueError(
"Evalml does not support the new pandas nullable types because "
"our dependencies (sklearn, xgboost, lightgbm) do not support them yet."
"If your data does not have missing values, please use the non-nullable types (bool, int64, float64). "
"If your data does have missing values, use float64 for int and float columns and category for boolean columns. "
f"These are the columns with nullable types: {list(cols_with_nullable_types.items())}"
)
[docs]def infer_feature_types(data, feature_types=None, ignore_nullable_types=False):
"""Create a Woodwork structure from the given list, pandas, or numpy input, with specified types for columns. If a column's type is not specified, it will be inferred by Woodwork.
Args:
data (pd.DataFrame, pd.Series): Input data to convert to a Woodwork data structure.
feature_types (string, ww.logical_type obj, dict, optional): If data is a 2D structure, feature_types must be a dictionary
mapping column names to the type of data represented in the column. If data is a 1D structure, then feature_types must be
a Woodwork logical type or a string representing a Woodwork logical type ("Double", "Integer", "Boolean", "Categorical", "Datetime", "NaturalLanguage")
ignore_nullable_types (bool): Whether to ignore raising an error upon detection of Nullable types. Defaults to False.
Returns:
A Woodwork data structure where the data type of each column was either specified or inferred.
Raises:
ValueError: If there is a mismatch between the dataframe and the woodwork schema.
"""
if isinstance(data, list):
data = _list_to_pandas(data)
elif isinstance(data, np.ndarray):
data = _numpy_to_pandas(data)
if not ignore_nullable_types:
_raise_value_error_if_nullable_types_detected(data)
def convert_all_nan_unknown_to_double(data):
def is_column_pd_na(data, col):
return data[col].isna().all()
def is_column_unknown(data, col):
return isinstance(data.ww.logical_types[col], Unknown)
if isinstance(data, pd.DataFrame):
all_null_unk_cols = [
col
for col in data.columns
if (is_column_unknown(data, col) and is_column_pd_na(data, col))
]
if len(all_null_unk_cols):
for col in all_null_unk_cols:
data.ww.set_types({col: "Double"})
return data
if data.ww.schema is not None:
if isinstance(data, pd.DataFrame) and not ww.is_schema_valid(
data, data.ww.schema
):
ww_error = ww.get_invalid_schema_message(data, data.ww.schema)
if "dtype mismatch" in ww_error:
ww_error = (
"Dataframe types are not consistent with logical types. This usually happens "
"when a data transformation does not go through the ww accessor. Call df.ww.init() to "
f"get rid of this message. This is a more detailed message about the mismatch: {ww_error}"
)
else:
ww_error = f"{ww_error}. Please initialize ww with df.ww.init() to get rid of this message."
raise ValueError(ww_error)
data.ww.init(schema=data.ww.schema)
return convert_all_nan_unknown_to_double(data)
if isinstance(data, pd.Series):
if all(data.isna()):
data = data.replace(pd.NA, np.nan)
feature_types = "Double"
return ww.init_series(data, logical_type=feature_types)
else:
ww_data = data.copy()
ww_data.ww.init(logical_types=feature_types)
return convert_all_nan_unknown_to_double(ww_data)
def _convert_numeric_dataset_pandas(X, y):
"""Convert numeric and non-null data to pandas datatype. Raises ValueError if there is null or non-numeric data. Used with data sampler strategies.
Args:
X (pd.DataFrame, np.ndarray): Data to transform.
y (pd.Series, np.ndarray): Target data.
Returns:
Tuple(pd.DataFrame, pd.Series): Transformed X and y.
"""
X_ww = infer_feature_types(X)
if not is_all_numeric(X_ww):
raise ValueError(
"Values not all numeric or there are null values provided in the dataset"
)
y_ww = infer_feature_types(y)
return X_ww, y_ww