Data Checks

Data checks.

Package Contents

Classes Summary

ClassImbalanceDataCheck

Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the number of CV folds. Use for classification problems.

DataCheck

Base class for all data checks.

DataCheckAction

A recommended action returned by a DataCheck.

DataCheckActionCode

Enum for data check action code.

DataCheckError

DataCheckMessage subclass for errors returned by data checks.

DataCheckMessage

Base class for a message returned by a DataCheck, tagged by name.

DataCheckMessageCode

Enum for data check message code.

DataCheckMessageType

Enum for type of data check message: WARNING or ERROR.

DataChecks

A collection of data checks.

DataCheckWarning

DataCheckMessage subclass for warnings returned by data checks.

DateTimeFormatDataCheck

Check if the datetime column has equally spaced intervals and is monotonically increasing or decreasing in order to be supported by time series estimators.

DateTimeNaNDataCheck

Check each column in the input for datetime features and will issue an error if NaN values are present.

DefaultDataChecks

A collection of basic data checks that is used by AutoML by default.

HighlyNullDataCheck

Check if there are any highly-null columns and rows in the input.

IDColumnsDataCheck

Check if any of the features are likely to be ID columns.

InvalidTargetDataCheck

Check if the target data contains missing or invalid values.

MulticollinearityDataCheck

Check if any set features are likely to be multicollinear.

NaturalLanguageNaNDataCheck

Checks each column in the input for natural language features and will issue an error if NaN values are present.

NoVarianceDataCheck

Check if the target or any of the features have no variance.

OutliersDataCheck

Checks if there are any outliers in input data by using IQR to determine score anomalies.

SparsityDataCheck

Check if there are any columns with sparsely populated values in the input.

TargetDistributionDataCheck

Check if the target data contains certain distributions that may need to be transformed prior training to improve model performance. Uses the Shapiro-Wilks test when the dataset is <=5000 samples, otherwise uses Jarque-Bera.

TargetLeakageDataCheck

Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.

UniquenessDataCheck

Check if there are any columns in the input that are either too unique for classification problems or not unique enough for regression problems.

Contents

class evalml.data_checks.ClassImbalanceDataCheck(threshold=0.1, min_samples=100, num_cv_folds=3)[source]

Check if any of the target labels are imbalanced, or if the number of values for each target are below 2 times the number of CV folds. Use for classification problems.

Parameters
  • threshold (float) – The minimum threshold allowed for class imbalance before a warning is raised. This threshold is calculated by comparing the number of samples in each class to the sum of samples in that class and the majority class. For example, a multiclass case with [900, 900, 100] samples per classes 0, 1, and 2, respectively, would have a 0.10 threshold for class 2 (100 / (900 + 100)). Defaults to 0.10.

  • min_samples (int) – The minimum number of samples per accepted class. If the minority class is both below the threshold and min_samples, then we consider this severely imbalanced. Must be greater than 0. Defaults to 100.

  • num_cv_folds (int) – The number of cross-validation folds. Must be positive. Choose 0 to ignore this warning. Defaults to 3.

Methods

name

Return a name describing the data check.

validate

Check if any target labels are imbalanced beyond a threshold for binary and multiclass problems.

name(cls)

Return a name describing the data check.

validate(self, X, y)[source]

Check if any target labels are imbalanced beyond a threshold for binary and multiclass problems.

Ignores NaN values in target labels if they appear.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features. Ignored.

  • y (pd.Series, np.ndarray) – Target labels to check for imbalanced data.

Returns

Dictionary with DataCheckWarnings if imbalance in classes is less than the threshold,

and DataCheckErrors if the number of values for each target is below 2 * num_cv_folds.

Return type

dict

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame()
>>> y = pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.10)
>>> assert class_imb_dc.validate(X, y) == {
...     "errors": [{"message": "The number of instances of these targets is less than 2 * the number of cross folds = 6 instances: [0]",
...                 "data_check_name": "ClassImbalanceDataCheck",
...                 "level": "error",
...                 "code": "CLASS_IMBALANCE_BELOW_FOLDS",
...                 "details": {"target_values": [0], "rows": None, "columns": None}}],
...     "warnings": [{"message": "The following labels fall below 10% of the target: [0]",
...                   "data_check_name": "ClassImbalanceDataCheck",
...                   "level": "warning",
...                   "code": "CLASS_IMBALANCE_BELOW_THRESHOLD",
...                   "details": {"target_values": [0], "rows": None, "columns": None}},
...                   {"message": "The following labels in the target have severe class imbalance because they fall under 10% of the target and have less than 100 samples: [0]",
...                   "data_check_name": "ClassImbalanceDataCheck",
...                   "level": "warning",
...                   "code": "CLASS_IMBALANCE_SEVERE",
...                   "details": {"target_values": [0], "rows": None, "columns": None}}],
...      "actions": []}
...
...
>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, min_samples=5, num_cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == {
...     'warnings': [{'message': 'The following labels fall below 30% of the target: [0]',
...                    'data_check_name': 'ClassImbalanceDataCheck',
...                    'level': 'warning',
...                    'code': 'CLASS_IMBALANCE_BELOW_THRESHOLD',
...                    'details': {'target_values': [0], "rows": None, "columns": None}},
...                    {'message': 'The following labels in the target have severe class imbalance because they fall under 30% of the target and have less than 5 samples: [0]',
...                     'data_check_name': 'ClassImbalanceDataCheck',
...                     'level': 'warning',
...                     'code': 'CLASS_IMBALANCE_SEVERE',
...                     'details': {'target_values': [0], "rows": None, "columns": None}}],
...     'errors': [],
...     'actions': []}
...
...
>>> y = pd.Series([0, 0, 1, 1, 1, 1, 2, 2, 2, 2])
>>> class_imb_dc = ClassImbalanceDataCheck(threshold=0.30, num_cv_folds=1)
>>> assert class_imb_dc.validate(X, y) == {'warnings': [], 'errors': [], 'actions': []}
class evalml.data_checks.DataCheck[source]

Base class for all data checks.

Data checks are a set of heuristics used to determine if there are problems with input data.

Methods

name

Return a name describing the data check.

validate

Inspect and validate the input data, runs any necessary calculations or algorithms, and returns a list of warnings and errors if applicable.

name(cls)

Return a name describing the data check.

abstract validate(self, X, y=None)[source]

Inspect and validate the input data, runs any necessary calculations or algorithms, and returns a list of warnings and errors if applicable.

Parameters
  • X (pd.DataFrame) – The input data of shape [n_samples, n_features]

  • y (pd.Series, optional) – The target data of length [n_samples]

Returns

Dictionary of DataCheckError and DataCheckWarning messages

Return type

dict (DataCheckMessage)

class evalml.data_checks.DataCheckAction(action_code, metadata=None)[source]

A recommended action returned by a DataCheck.

Parameters
  • action_code (DataCheckActionCode) – Action code associated with the action.

  • metadata (dict, optional) – Additional useful information associated with the action. Defaults to None.

Methods

convert_dict_to_action

Convert a dictionary into a DataCheckAction.

to_dict

Return a dictionary form of the data check action.

static convert_dict_to_action(action_dict)[source]

Convert a dictionary into a DataCheckAction.

Parameters

action_dict – Dictionary to convert into action. Should have keys “code” and “metadata”.

Raises

ValueError – If input dictionary does not have keys code and metadata and if the metadata dictionary does not have keys columns and rows.

Returns

DataCheckAction object from the input dictionary.

to_dict(self)[source]

Return a dictionary form of the data check action.

class evalml.data_checks.DataCheckActionCode[source]

Enum for data check action code.

Attributes

DROP_COL

Action code for dropping a column.

DROP_ROWS

Action code for dropping rows.

IMPUTE_COL

Action code for imputing a column.

TRANSFORM_TARGET

Action code for transforming the target data.

Methods

name

The name of the Enum member.

value

The value of the Enum member.

name(self)

The name of the Enum member.

value(self)

The value of the Enum member.

class evalml.data_checks.DataCheckError(message, data_check_name, message_code=None, details=None)[source]

DataCheckMessage subclass for errors returned by data checks.

Attributes

message_type

DataCheckMessageType.ERROR

Methods

to_dict

Return a dictionary form of the data check message.

to_dict(self)

Return a dictionary form of the data check message.

class evalml.data_checks.DataCheckMessage(message, data_check_name, message_code=None, details=None)[source]

Base class for a message returned by a DataCheck, tagged by name.

Parameters
  • message (str) – Message string.

  • data_check_name (str) – Name of data check.

  • message_code (DataCheckMessageCode) – Message code associated with message. Defaults to None.

  • details (dict) – Additional useful information associated with the message. Defaults to None.

Attributes

message_type

None

Methods

to_dict

Return a dictionary form of the data check message.

to_dict(self)[source]

Return a dictionary form of the data check message.

class evalml.data_checks.DataCheckMessageCode[source]

Enum for data check message code.

Attributes

CLASS_IMBALANCE_BELOW_FOLDS

Message code for when the number of values for each target is below 2 * number of CV folds.

CLASS_IMBALANCE_BELOW_THRESHOLD

Message code for when balance in classes is less than the threshold.

CLASS_IMBALANCE_SEVERE

Message code for when balance in classes is less than the threshold and minimum class is less than minimum number of accepted samples.

DATETIME_HAS_NAN

Message code for when input datetime columns contain NaN values.

DATETIME_HAS_UNEVEN_INTERVALS

Message code for when the datetime values have uneven intervals.

DATETIME_INFORMATION_NOT_FOUND

Message code for when datetime information can not be found or is in an unaccepted format.

DATETIME_IS_NOT_MONOTONIC

Message code for when the datetime values are not monotonically increasing.

HAS_ID_COLUMN

Message code for data that has ID columns.

HAS_OUTLIERS

Message code for when outliers are detected.

HIGH_VARIANCE

Message code for when high variance is detected for cross-validation.

HIGHLY_NULL_COLS

Message code for highly null columns.

HIGHLY_NULL_ROWS

Message code for highly null rows.

IS_MULTICOLLINEAR

Message code for when data is potentially multicollinear.

MISMATCHED_INDICES

Message code for when input target and features have mismatched indices.

MISMATCHED_INDICES_ORDER

Message code for when input target and features have mismatched indices order. The two inputs have the same index values, but shuffled.

MISMATCHED_LENGTHS

Message code for when input target and features have different lengths.

NATURAL_LANGUAGE_HAS_NAN

Message code for when input natural language columns contain NaN values.

NO_VARIANCE

Message code for when data has no variance (1 unique value).

NO_VARIANCE_WITH_NULL

Message code for when data has one unique value and NaN values.

NOT_UNIQUE_ENOUGH

Message code for when data does not possess enough unique values.

TARGET_BINARY_NOT_TWO_UNIQUE_VALUES

Message code for target data for a binary classification problem that does not have two unique values.

TARGET_HAS_NULL

Message code for target data that has null values.

TARGET_INCOMPATIBLE_OBJECTIVE

Message code for target data that has incompatible values for the specified objective

TARGET_IS_EMPTY_OR_FULLY_NULL

Message code for target data that is empty or has all null values.

TARGET_IS_NONE

Message code for when target is None.

TARGET_LEAKAGE

Message code for when target leakage is detected.

TARGET_LOGNORMAL_DISTRIBUTION

Message code for target data with a lognormal distribution.

TARGET_MULTICLASS_HIGH_UNIQUE_CLASS

Message code for target data for a multi classification problem that has an abnormally large number of unique classes relative to the number of target values.

TARGET_MULTICLASS_NOT_ENOUGH_CLASSES

Message code for target data for a multi classification problem that does not have more than two unique classes.

TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS

Message code for target data for a multi classification problem that does not have two examples per class.

TARGET_UNSUPPORTED_PROBLEM_TYPE

Message code for target data that is being checked against an unsupported problem type.

TARGET_UNSUPPORTED_TYPE

Message code for target data that is of an unsupported type.

TOO_SPARSE

Message code for when multiclass data has values that are too sparsely populated.

TOO_UNIQUE

Message code for when data possesses too many unique values.

Methods

name

The name of the Enum member.

value

The value of the Enum member.

name(self)

The name of the Enum member.

value(self)

The value of the Enum member.

class evalml.data_checks.DataCheckMessageType[source]

Enum for type of data check message: WARNING or ERROR.

Attributes

ERROR

Error message returned by a data check.

WARNING

Warning message returned by a data check.

Methods

name

The name of the Enum member.

value

The value of the Enum member.

name(self)

The name of the Enum member.

value(self)

The value of the Enum member.

class evalml.data_checks.DataChecks(data_checks=None, data_check_params=None)[source]

A collection of data checks.

Parameters
  • data_checks (list (DataCheck)) – List of DataCheck objects.

  • data_check_params (dict) – Parameters for passed DataCheck objects.

Methods

validate

Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

validate(self, X, y=None)[source]

Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
  • X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

  • y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns

Dictionary containing DataCheckMessage objects

Return type

dict

class evalml.data_checks.DataCheckWarning(message, data_check_name, message_code=None, details=None)[source]

DataCheckMessage subclass for warnings returned by data checks.

Attributes

message_type

DataCheckMessageType.WARNING

Methods

to_dict

Return a dictionary form of the data check message.

to_dict(self)

Return a dictionary form of the data check message.

class evalml.data_checks.DateTimeFormatDataCheck(datetime_column='index')[source]

Check if the datetime column has equally spaced intervals and is monotonically increasing or decreasing in order to be supported by time series estimators.

Parameters

datetime_column (str, int) – The name of the datetime column. If the datetime values are in the index, then pass “index”.

Methods

name

Return a name describing the data check.

validate

Checks if the target data has equal intervals and is sorted.

name(cls)

Return a name describing the data check.

validate(self, X, y)[source]

Checks if the target data has equal intervals and is sorted.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features.

  • y (pd.Series, np.ndarray) – Target data.

Returns

List with DataCheckErrors if unequal intervals are found in the datetime column.

Return type

dict (DataCheckError)

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame(pd.date_range("2021-01-01", periods=9).append(pd.date_range("2021-01-31", periods=1)), columns=["dates"])
>>> y = pd.Series([0, 1, 0, 1, 1, 0, 0, 0, 1, 0])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="dates")
>>> assert datetime_format_dc.validate(X, y) == {
...     "errors": [{"message": "No frequency could be detected in dates, possibly due to uneven intervals.",
...                 "data_check_name": "DateTimeFormatDataCheck",
...                 "level": "error",
...                 "code": "DATETIME_HAS_UNEVEN_INTERVALS",
...                 "details": {"columns": None, "rows": None}
...                 }],
...     "warnings": [],
...     "actions": []}
...
...
>>> X = pd.DataFrame([1, 2, 3, 4], columns=["Weeks"])
>>> y = pd.Series([0] * 4)
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Datetime information could not be found in the data, or was not in a supported datetime format.',
...                 'data_check_name': 'DateTimeFormatDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None},
...                 'code': 'DATETIME_INFORMATION_NOT_FOUND'}],
...     'actions': []}
...
...
>>> X = pd.DataFrame(pd.to_datetime([1, 2, 3, 4]), columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> X = pd.DataFrame(pd.date_range("2021-01-01", freq='W', periods=10), columns=["Weeks"])
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> X = X.iloc[::-1]
>>> datetime_format_dc = DateTimeFormatDataCheck(datetime_column="Weeks")
>>> assert datetime_format_dc.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Datetime values must be sorted in ascending order.',
...                 'data_check_name': 'DateTimeFormatDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None},
...                 'code': 'DATETIME_IS_NOT_MONOTONIC'}],
...     'actions': []}
class evalml.data_checks.DateTimeNaNDataCheck[source]

Check each column in the input for datetime features and will issue an error if NaN values are present.

Methods

name

Return a name describing the data check.

validate

Check if any datetime columns contain NaN values.

name(cls)

Return a name describing the data check.

validate(self, X, y=None)[source]

Check if any datetime columns contain NaN values.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features.

  • y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns

dict with a DataCheckError if NaN values are present in datetime columns.

Return type

dict

Examples

>>> import pandas as pd
>>> import numpy as np
...
>>> dates = [['2-1-21', '3-1-21'],
...         ['2-2-21', '3-2-21'],
...         ['2-3-21', '3-3-21'],
...         ['2-4-21', '3-4-21']]
>>> df = pd.DataFrame(dates, columns=['index', "days"])
>>> dt_nan_dc = DateTimeNaNDataCheck()
>>> assert dt_nan_dc.validate(df) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> dates[0][0] = np.datetime64('NaT')
>>> df = pd.DataFrame(dates, columns=['index', "days"])
>>> assert dt_nan_dc.validate(df) == {
...     'warnings': [],
...     'errors': [{'message': 'Input datetime column(s) (index) contains NaN values. Please impute NaN values or drop these rows or columns.',
...                 'data_check_name': 'DateTimeNaNDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['index'], 'rows': None},
...                 'code': 'DATETIME_HAS_NAN'}],
...     'actions': []}
...
...
>>> dates[0][1] = None
>>> df = pd.DataFrame(dates, columns=['index', "days"])
>>> assert dt_nan_dc.validate(df) == {
...     'warnings': [],
...     'errors': [{'message': 'Input datetime column(s) (index, days) contains NaN values. Please impute NaN values or drop these rows or columns.',
...                 'data_check_name': 'DateTimeNaNDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['index', 'days'], 'rows': None},
...                 'code': 'DATETIME_HAS_NAN'}],
...     'actions': []}
...
...
>>> dates[0][1] = pd.NA
>>> df = pd.DataFrame(dates, columns=['index', "days"])
>>> assert dt_nan_dc.validate(df) == {
...     'warnings': [],
...     'errors': [{'message': 'Input datetime column(s) (index, days) contains NaN values. Please impute NaN values or drop these rows or columns.',
...                 'data_check_name': 'DateTimeNaNDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['index', 'days'], 'rows': None},
...                 'code': 'DATETIME_HAS_NAN'}],
...     'actions': []}
class evalml.data_checks.DefaultDataChecks(problem_type, objective, n_splits=3, datetime_column=None)[source]

A collection of basic data checks that is used by AutoML by default.

Includes:

  • HighlyNullDataCheck

  • HighlyNullRowsDataCheck

  • IDColumnsDataCheck

  • TargetLeakageDataCheck

  • InvalidTargetDataCheck

  • NoVarianceDataCheck

  • ClassImbalanceDataCheck (for classification problem types)

  • DateTimeNaNDataCheck

  • NaturalLanguageNaNDataCheck

  • TargetDistributionDataCheck (for regression problem types)

  • DateTimeFormatDataCheck (for time series problem types)

Parameters
  • problem_type (str) – The problem type that is being validated. Can be regression, binary, or multiclass.

  • objective (str or ObjectiveBase) – Name or instance of the objective class.

  • n_splits (int) – The number of splits as determined by the data splitter being used. Defaults to 3.

  • datetime_column (str) – The name of the column containing datetime information to be used for time series problems.

  • to "index" indicating that the datetime information is in the index of X or y. (Default) –

Methods

validate

Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

validate(self, X, y=None)

Inspect and validate the input data against data checks and returns a list of warnings and errors if applicable.

Parameters
  • X (pd.DataFrame, np.ndarray) – The input data of shape [n_samples, n_features]

  • y (pd.Series, np.ndarray) – The target data of length [n_samples]

Returns

Dictionary containing DataCheckMessage objects

Return type

dict

class evalml.data_checks.HighlyNullDataCheck(pct_null_col_threshold=0.95, pct_null_row_threshold=0.95)[source]

Check if there are any highly-null columns and rows in the input.

Parameters
  • pct_null_col_threshold (float) – If the percentage of NaN values in an input feature exceeds this amount, that column will be considered highly-null. Defaults to 0.95.

  • pct_null_row_threshold (float) – If the percentage of NaN values in an input row exceeds this amount, that row will be considered highly-null. Defaults to 0.95.

Methods

name

Return a name describing the data check.

validate

Check if there are any highly-null columns or rows in the input.

name(cls)

Return a name describing the data check.

validate(self, X, y=None)[source]

Check if there are any highly-null columns or rows in the input.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features.

  • y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns

dict with a DataCheckWarning if there are any highly-null columns or rows.

Return type

dict

Examples

>>> import pandas as pd
...
>>> class SeriesWrap():
...     def __init__(self, series):
...         self.series = series
...
...     def __eq__(self, series_2):
...         return all(self.series.eq(series_2.series))
...
>>> df = pd.DataFrame({
...     'all_null': [None, pd.NA, None, None, None],
...     'lots_of_null': [None, None, None, None, 5],
...     'few_null': ["near", "far", pd.NaT, "wherever", "nowhere"],
...     'no_null': [1, 2, 3, 4, 5]
... })
...
>>> highly_null_dc = HighlyNullDataCheck(pct_null_col_threshold=0.50)
>>> assert highly_null_dc.validate(df) == {
...     'warnings': [{'message': "Columns 'all_null', 'lots_of_null' are 50.0% or more null",
...                   'data_check_name': 'HighlyNullDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['all_null', 'lots_of_null'],
...                               'rows': None,
...                               'pct_null_rows': {'all_null': 1.0, 'lots_of_null': 0.8},
...                               'null_row_indices': {'all_null': [0, 1, 2, 3, 4],
...                                                    'lots_of_null': [0, 1, 2, 3]}},
...                   'code': 'HIGHLY_NULL_COLS'}],
...     'errors': [],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ['all_null', 'lots_of_null'], 'rows': None}}]}
...
...
>>> highly_null_dc = HighlyNullDataCheck(pct_null_row_threshold=0.50)
>>> validation_results = highly_null_dc.validate(df)
>>> validation_results['warnings'][0]['details']['pct_null_cols'] = SeriesWrap(validation_results['warnings'][0]['details']['pct_null_cols'])
>>> highly_null_rows = SeriesWrap(pd.Series([0.5, 0.5, 0.75, 0.5]))
>>> assert validation_results == {
...     'warnings': [{'message': '4 out of 5 rows are 50.0% or more null',
...                   'data_check_name': 'HighlyNullDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': None,
...                               'rows': [0, 1, 2, 3],
...                               'pct_null_cols': highly_null_rows},
...                   'code': 'HIGHLY_NULL_ROWS'},
...                  {'message': "Columns 'all_null' are 95.0% or more null",
...                   'data_check_name': 'HighlyNullDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['all_null'],
...                               'rows': None,
...                               'pct_null_rows': {'all_null': 1.0},
...                               'null_row_indices': {'all_null': [0, 1, 2, 3, 4]}},
...                   'code': 'HIGHLY_NULL_COLS'}],
...     'errors': [],
...     'actions': [{'code': 'DROP_ROWS',
...                  'metadata': {'columns': None, 'rows': [0, 1, 2, 3]}},
...                 {'code': 'DROP_COL',
...                  'metadata': {'columns': ['all_null'], 'rows': None}}]}
class evalml.data_checks.IDColumnsDataCheck(id_threshold=1.0)[source]

Check if any of the features are likely to be ID columns.

Parameters

id_threshold (float) – The probability threshold to be considered an ID column. Defaults to 1.0.

Methods

name

Return a name describing the data check.

validate

Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.

name(cls)

Return a name describing the data check.

validate(self, X, y=None)[source]

Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.

Checks performed are:

  • column name is “id”

  • column name ends in “_id”

  • column contains all unique values (and is categorical / integer type)

Parameters
  • X (pd.DataFrame, np.ndarray) – The input features to check.

  • y (pd.Series) – The target. Defaults to None. Ignored.

Returns

A dictionary of features with column name or index and their probability of being ID columns

Return type

dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
...     'customer_id': [123, 124, 125, 126, 127],
...     'Sales': [10, 42, 31, 51, 61]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == {
...     "errors": [],
...     "warnings": [{"message": "Columns 'customer_id' are 100.0% or more likely to be an ID column",
...                   "data_check_name": "IDColumnsDataCheck",
...                   "level": "warning",
...                   "code": "HAS_ID_COLUMN",
...                   "details": {"columns": ["customer_id"], "rows": None}}],
...     "actions": [{"code": "DROP_COL",
...                  "metadata": {"columns": ["customer_id"], "rows": None}}]}
...
...
>>> df = df.rename(columns={"customer_id": "ID"})
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == {
...     "errors": [],
...     "warnings": [{"message": "Columns 'ID' are 100.0% or more likely to be an ID column",
...                   "data_check_name": "IDColumnsDataCheck",
...                   "level": "warning",
...                   "code": "HAS_ID_COLUMN",
...                   "details": {"columns": ["ID"], "rows": None}}],
...     "actions": [{"code": "DROP_COL",
...                  "metadata": {"columns": ["ID"], "rows": None}}]}
...
...
>>> df = pd.DataFrame({
...    'Country_Rank': [1, 2, 3, 4, 5],
...    'Sales': ["very high", "high", "high", "medium", "very low"]
... })
...
>>> id_col_check = IDColumnsDataCheck()
>>> assert id_col_check.validate(df) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> id_col_check = IDColumnsDataCheck()
>>> id_col_check = IDColumnsDataCheck(id_threshold=0.95)
>>> assert id_col_check.validate(df) == {
...     'warnings': [{'message': "Columns 'Country_Rank' are 95.0% or more likely to be an ID column",
...                   'data_check_name': 'IDColumnsDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['Country_Rank'], 'rows': None},
...                   'code': 'HAS_ID_COLUMN'}],
...     'errors': [],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ['Country_Rank'], 'rows': None}}]}
class evalml.data_checks.InvalidTargetDataCheck(problem_type, objective, n_unique=100)[source]

Check if the target data contains missing or invalid values.

Parameters
  • problem_type (str or ProblemTypes) – The specific problem type to data check for. e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

  • objective (str or ObjectiveBase) – Name or instance of the objective class.

  • n_unique (int) – Number of unique target values to store when problem type is binary and target incorrectly has more than 2 unique values. Non-negative integer. If None, stores all unique values. Defaults to 100.

Attributes

multiclass_continuous_threshold

0.05

Methods

name

Return a name describing the data check.

validate

Check if the target data contains missing or invalid values.

name(cls)

Return a name describing the data check.

validate(self, X, y)[source]

Check if the target data contains missing or invalid values.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features. Ignored.

  • y (pd.Series, np.ndarray) – Target data to check for invalid values.

Returns

List with DataCheckErrors if any invalid values are found in the target data.

Return type

dict (DataCheckError)

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame({"col": [1, 2, 3, 1]})
>>> y = pd.Series(["cat_1", "cat_2", "cat_1", "cat_2"])
>>> target_check = InvalidTargetDataCheck('regression', 'R2')
>>> assert target_check.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Target is unsupported Unknown type. Valid Woodwork logical types include: integer, double, boolean',
...                 'data_check_name': 'InvalidTargetDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None, 'unsupported_type': 'unknown'},
...                 'code': 'TARGET_UNSUPPORTED_TYPE'},
...                {'message': 'Target data type should be numeric for regression type problems.',
...                 'data_check_name': 'InvalidTargetDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None},
...                 'code': 'TARGET_UNSUPPORTED_TYPE'}],
...     'actions': []}
...
...
>>> y = pd.Series([None, pd.NA, pd.NaT, None])
>>> assert target_check.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Target is either empty or fully null.',
...                 'data_check_name': 'InvalidTargetDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None},
...                 'code': 'TARGET_IS_EMPTY_OR_FULLY_NULL'}],
...     'actions': []}
...
...
>>> y = pd.Series([1, None, 3, None])
>>> assert target_check.validate(None, y) == {
...     'warnings': [],
...     'errors': [{'message': '2 row(s) (50.0%) of target values are null',
...                 'data_check_name': 'InvalidTargetDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None,
...                             'rows': None,
...                             'num_null_rows': 2,
...                             'pct_null_rows': 50.0},
...                 'code': 'TARGET_HAS_NULL'}],
...     'actions': [{'code': 'IMPUTE_COL',
...                  'metadata': {'columns': None,
...                               'rows': None,
...                               'is_target': True,
...                               'impute_strategy': 'mean'}}]}
...
...
>>> X = pd.DataFrame([i for i in range(50)])
>>> y = pd.Series([i%2 for i in range(50)])
>>> target_check = InvalidTargetDataCheck('multiclass', 'Log Loss Multiclass')
>>> assert target_check.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Target has two or less classes, which is too few for multiclass problems.  Consider changing to binary.',
...                 'data_check_name': 'InvalidTargetDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None, 'num_classes': 2},
...                 'code': 'TARGET_MULTICLASS_NOT_ENOUGH_CLASSES'}],
...     'actions': []}
...
...
>>> target_check = InvalidTargetDataCheck('regression', 'R2')
>>> X = pd.DataFrame([i for i in range(5)])
>>> y = pd.Series([1, 2, 4, 3], index=[1, 2, 4, 3])
>>> assert target_check.validate(X, y) == {
...     'warnings': [{'message': 'Input target and features have different lengths',
...                   'data_check_name': 'InvalidTargetDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': None,
...                               'rows': None,
...                               'features_length': 5,
...                               'target_length': 4},
...                   'code': 'MISMATCHED_LENGTHS'},
...                  {'message': 'Input target and features have mismatched indices',
...                   'data_check_name': 'InvalidTargetDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': None,
...                               'rows': None,
...                               'indices_not_in_features': [],
...                               'indices_not_in_target': [0]},
...                   'code': 'MISMATCHED_INDICES'}],
...     'errors': [],
...     'actions': []}
class evalml.data_checks.MulticollinearityDataCheck(threshold=0.9)[source]

Check if any set features are likely to be multicollinear.

Parameters

threshold (float) – The threshold to be considered. Defaults to 0.9.

Methods

name

Return a name describing the data check.

validate

Check if any set of features are likely to be multicollinear.

name(cls)

Return a name describing the data check.

validate(self, X, y=None)[source]

Check if any set of features are likely to be multicollinear.

Parameters
  • X (pd.DataFrame) – The input features to check.

  • y (pd.Series) – The target. Ignored.

Returns

dict with a DataCheckWarning if there are any potentially multicollinear columns.

Return type

dict

Example

>>> import pandas as pd
...
>>> col = pd.Series([1, 0, 2, 3, 4])
>>> X = pd.DataFrame({"col_1": col, "col_2": col * 3})
>>> y = pd.Series([1, 0, 0, 1, 0])
...
>>> multicollinearity_check = MulticollinearityDataCheck(threshold=1.0)
>>> assert multicollinearity_check.validate(X, y) == {
...     "errors": [],
...     "warnings": [{'message': "Columns are likely to be correlated: [('col_1', 'col_2')]",
...                   "data_check_name": "MulticollinearityDataCheck",
...                   "level": "warning",
...                   "code": "IS_MULTICOLLINEAR",
...                   'details': {"columns": [('col_1', 'col_2')], "rows": None}}],
...     "actions": []}
class evalml.data_checks.NaturalLanguageNaNDataCheck[source]

Checks each column in the input for natural language features and will issue an error if NaN values are present.

Methods

name

Return a name describing the data check.

validate

Check if any natural language columns contain NaN values.

name(cls)

Return a name describing the data check.

validate(self, X, y=None)[source]

Check if any natural language columns contain NaN values.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features.

  • y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns

dict with a DataCheckError if NaN values are present in natural language columns.

Return type

dict

Example

>>> import pandas as pd
>>> import woodwork as ww
>>> import numpy as np
...
>>> data = pd.DataFrame()
>>> data['A'] = [None, "string_that_is_long_enough_for_natural_language"]
>>> data['B'] = ['string_that_is_long_enough_for_natural_language', 'string_that_is_long_enough_for_natural_language']
>>> data['C'] = np.random.randint(0, 3, size=len(data))
>>> data.ww.init(logical_types={'A': 'NaturalLanguage', 'B': 'NaturalLanguage'})
...
>>> nl_nan_check = NaturalLanguageNaNDataCheck()
>>> assert nl_nan_check.validate(data) == {
...        "warnings": [],
...        "actions": [],
...        "errors": [DataCheckError(message='Input natural language column(s) (A) contains NaN values. Please impute NaN values or drop these rows or columns.',
...                      data_check_name=NaturalLanguageNaNDataCheck.name,
...                      message_code=DataCheckMessageCode.NATURAL_LANGUAGE_HAS_NAN,
...                      details={"columns": ['A']}).to_dict()]
...    }
class evalml.data_checks.NoVarianceDataCheck(count_nan_as_value=False)[source]

Check if the target or any of the features have no variance.

Parameters

count_nan_as_value (bool) – If True, missing values will be counted as their own unique value. Additionally, if true, will return a DataCheckWarning instead of an error if the feature has mostly missing data and only one unique value. Defaults to False.

Methods

name

Return a name describing the data check.

validate

Check if the target or any of the features have no variance (1 unique value).

name(cls)

Return a name describing the data check.

validate(self, X, y)[source]

Check if the target or any of the features have no variance (1 unique value).

Parameters
  • X (pd.DataFrame, np.ndarray) – The input features.

  • y (pd.Series, np.ndarray) – The target data.

Returns

A dict of warnings/errors corresponding to features or target with no variance.

Return type

dict

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame([2, 2, 2, 2, 2, 2, 2, 2], columns=["First_Column"])
>>> y = pd.Series([1, 1, 1, 1, 1, 1, 1, 1])
...
>>> novar_dc = NoVarianceDataCheck()
>>> assert novar_dc.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': "'First_Column' has 1 unique value.",
...                 'data_check_name': 'NoVarianceDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['First_Column'], 'rows': None},
...                 'code': 'NO_VARIANCE'},
...                {'message': 'Y has 1 unique value.',
...                 'data_check_name': 'NoVarianceDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['Y'], 'rows': None},
...                 'code': 'NO_VARIANCE'}],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ["First_Column"], 'rows': None}}]}
...
...
>>> X["First_Column"] = [2, 2, 2, 3, 3, 3, None, None]
>>> y = pd.Series([1, 1, 1, 2, 2, 2, None, None])
>>> assert novar_dc.validate(X, y) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> y = pd.Series([None] * 7)
>>> assert novar_dc.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Y has 0 unique values.',
...                 'data_check_name': 'NoVarianceDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['Y'], 'rows': None},
...                 'code': 'NO_VARIANCE'}],
...     'actions': []}
...
...
>>> X["First_Column"] = [2, 2, 2, 2, None, None, None, None]
>>> y = pd.Series([1, 1, 1, 1, None, None, None, None])
>>> assert novar_dc.validate(X, y) == {
...     'warnings': [],
...     'errors': [{'message': "'First_Column' has 1 unique value.",
...                 'data_check_name': 'NoVarianceDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['First_Column'], 'rows': None},
...                 'code': 'NO_VARIANCE'},
...                {'message': 'Y has 1 unique value.',
...                 'data_check_name': 'NoVarianceDataCheck',
...                 'level': 'error',
...                 'details': {'columns': ['Y'], 'rows': None},
...                 'code': 'NO_VARIANCE'}],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ['First_Column'], 'rows': None}}]}
...
...
>>> novar_dc = NoVarianceDataCheck(count_nan_as_value=True)
>>> assert novar_dc.validate(X, y) == {
...     'warnings': [{'message': "'First_Column' has two unique values including nulls. Consider encoding the nulls for this column to be useful for machine learning.",
...                   'data_check_name': 'NoVarianceDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['First_Column'], 'rows': None},
...                   'code': 'NO_VARIANCE_WITH_NULL'},
...                  {'message': 'Y has two unique values including nulls. Consider encoding the nulls for this column to be useful for machine learning.',
...                   'data_check_name': 'NoVarianceDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['Y'], 'rows': None},
...                   'code': 'NO_VARIANCE_WITH_NULL'}],
...     'errors': [],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ['First_Column'], 'rows': None}}]}
class evalml.data_checks.OutliersDataCheck[source]

Checks if there are any outliers in input data by using IQR to determine score anomalies.

Columns with score anomalies are considered to contain outliers.

Methods

get_boxplot_data

Returns box plot information for the given data.

name

Return a name describing the data check.

validate

Check if there are any outliers in a dataframe by using IQR to determine column anomalies. Column with anomalies are considered to contain outliers.

static get_boxplot_data(data_)[source]

Returns box plot information for the given data.

Parameters

data (pd.Series, np.ndarray) – Input data.

Returns

A payload of box plot statistics.

Return type

dict

name(cls)

Return a name describing the data check.

validate(self, X, y=None)[source]

Check if there are any outliers in a dataframe by using IQR to determine column anomalies. Column with anomalies are considered to contain outliers.

Parameters
  • X (pd.DataFrame, np.ndarray) – Input features.

  • y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns

A dictionary with warnings if any columns have outliers.

Return type

dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
...     'x': [1, 2, 3, 4, 5],
...     'y': [6, 7, 8, 9, 10],
...     'z': [-1, -2, -3, -1201, -4]
... })
...
>>> outliers_check = OutliersDataCheck()
>>> assert outliers_check.validate(df) == {
...     "warnings": [{"message": "Column(s) 'z' are likely to have outlier data.",
...                   "data_check_name": "OutliersDataCheck",
...                   "level": "warning",
...                   "code": "HAS_OUTLIERS",
...                   "details": {"columns": ["z"], "rows": [3], "column_indices": {"z": [3]}}}],
...     "errors": [],
...     "actions": [{"code": "DROP_ROWS", "metadata": {"rows": [3], "columns": None}}]}
...
...
>>> box_plot_data = OutliersDataCheck.get_boxplot_data(df['z'])
>>> box_plot_data["score"] = round(box_plot_data["score"], 2)
>>> assert box_plot_data == {
...     'score': 0.89,
...     'pct_outliers': 0.2,
...     'values': {'q1': -4.0,
...                'median': -3.0,
...                'q3': -2.0,
...                'low_bound': -7.0,
...                'high_bound': 1.0,
...                'low_values': [-1201],
...                'high_values': [],
...                'low_indices': [3],
...                'high_indices': []}}
class evalml.data_checks.SparsityDataCheck(problem_type, threshold, unique_count_threshold=10)[source]

Check if there are any columns with sparsely populated values in the input.

Parameters
  • problem_type (str or ProblemTypes) – The specific problem type to data check for. ‘multiclass’ or ‘time series multiclass’ is the only accepted problem type.

  • threshold (float) – The threshold value, or percentage of each column’s unique values, below which, a column exhibits sparsity. Should be between 0 and 1.

  • unique_count_threshold (int) – The minimum number of times a unique value has to be present in a column to not be considered “sparse.” Defaults to 10.

Methods

name

Return a name describing the data check.

sparsity_score

Calculate a sparsity score for the given value counts by calculating the percentage of unique values that exceed the count_threshold.

validate

Calculate what percentage of each column’s unique values exceed the count threshold and compare that percentage to the sparsity threshold stored in the class instance.

name(cls)

Return a name describing the data check.

static sparsity_score(col, count_threshold=10)[source]

Calculate a sparsity score for the given value counts by calculating the percentage of unique values that exceed the count_threshold.

Parameters
  • col (pd.Series) – Feature values.

  • count_threshold (int) – The number of instances below which a value is considered sparse. Default is 10.

Returns

Sparsity score, or the percentage of the unique values that exceed count_threshold.

Return type

(float)

validate(self, X, y=None)[source]

Calculate what percentage of each column’s unique values exceed the count threshold and compare that percentage to the sparsity threshold stored in the class instance.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features.

  • y (pd.Series, np.ndarray) – Ignored.

Returns

dict with a DataCheckWarning if there are any sparse columns.

Return type

dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
...    'sparse': [float(x) for x in range(100)],
...    'not_sparse': [float(1) for x in range(100)]
... })
...
>>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5, unique_count_threshold=10)
>>> assert sparsity_check.validate(df) == {
...     "errors": [],
...     "warnings": [{"message": "Input columns ('sparse') for multiclass problem type are too sparse.",
...                   "data_check_name": "SparsityDataCheck",
...                    "level": "warning",
...                    "code": "TOO_SPARSE",
...                    "details": {"columns": ["sparse"], "sparsity_score": {"sparse": 0.0}, "rows": None}}],
...     "actions": [{"code": "DROP_COL",
...                  "metadata": {"columns": ["sparse"], "rows": None}}]}
...
...
>>> df['sparse'] = [float(x % 10) for x in range(100)]
>>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=1, unique_count_threshold=5)
>>> assert sparsity_check.validate(df) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> sparse_array = pd.Series([1, 1, 1, 2, 2, 3] * 3)
>>> assert SparsityDataCheck.sparsity_score(sparse_array, count_threshold=5) == 0.6666666666666666
class evalml.data_checks.TargetDistributionDataCheck[source]

Check if the target data contains certain distributions that may need to be transformed prior training to improve model performance. Uses the Shapiro-Wilks test when the dataset is <=5000 samples, otherwise uses Jarque-Bera.

Methods

name

Return a name describing the data check.

validate

Check if the target data has a certain distribution.

name(cls)

Return a name describing the data check.

validate(self, X, y)[source]

Check if the target data has a certain distribution.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features. Ignored.

  • y (pd.Series, np.ndarray) – Target data to check for underlying distributions.

Returns

List with DataCheckErrors if certain distributions are found in the target data.

Return type

dict (DataCheckError)

Examples

>>> import pandas as pd
...
>>> y = [0.946, 0.972, 1.154, 0.954, 0.969, 1.222, 1.038, 0.999, 0.973, 0.897]
>>> target_check = TargetDistributionDataCheck()
>>> assert target_check.validate(None, y) == {
...     "errors": [],
...     "warnings": [{"message": "Target may have a lognormal distribution.",
...                   "data_check_name": "TargetDistributionDataCheck",
...                   "level": "warning",
...                   "code": "TARGET_LOGNORMAL_DISTRIBUTION",
...                   "details": {"shapiro-statistic/pvalue": '0.8/0.045', "columns": None, "rows": None}}],
...     "actions": [{'code': 'TRANSFORM_TARGET',
...                  'metadata': {'transformation_strategy': 'lognormal',
...                               'is_target': True,
...                               "columns": None,
...                               "rows": None}}]}
...
...
>>> y = pd.Series([1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 5])
>>> assert target_check.validate(None, y) == {'warnings': [], 'errors': [], 'actions': []}
...
...
>>> y = pd.Series(pd.date_range('1/1/21', periods=10))
>>> assert target_check.validate(None, y) == {
...     'warnings': [],
...     'errors': [{'message': 'Target is unsupported datetime type. Valid Woodwork logical types include: integer, double',
...                 'data_check_name': 'TargetDistributionDataCheck',
...                 'level': 'error',
...                 'details': {'columns': None, 'rows': None, 'unsupported_type': 'datetime'},
...                 'code': 'TARGET_UNSUPPORTED_TYPE'}],
...     'actions': []}
class evalml.data_checks.TargetLeakageDataCheck(pct_corr_threshold=0.95, method='mutual')[source]

Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.

If method=’mutual’, this data check uses mutual information and supports all target and feature types. Otherwise, if method=’pearson’, it uses Pearson correlation and only supports binary with numeric and boolean dtypes. Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].

Parameters
  • pct_corr_threshold (float) – The correlation threshold to be considered leakage. Defaults to 0.95.

  • method (string) – The method to determine correlation. Use ‘mutual’ for mutual information, otherwise ‘pearson’ for Pearson correlation. Defaults to ‘mutual’.

Methods

name

Return a name describing the data check.

validate

Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.

name(cls)

Return a name describing the data check.

validate(self, X, y)[source]

Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.

If method=’mutual’, supports all target and feature types. Otherwise, if method=’pearson’ only supports binary with numeric and boolean dtypes. Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].

Parameters
  • X (pd.DataFrame, np.ndarray) – The input features to check.

  • y (pd.Series, np.ndarray) – The target data.

Returns

dict with a DataCheckWarning if target leakage is detected.

Return type

dict (DataCheckWarning)

Examples

>>> import pandas as pd
...
>>> X = pd.DataFrame({
...    'leak': [10, 42, 31, 51, 61],
...    'x': [42, 54, 12, 64, 12],
...    'y': [13, 5, 13, 74, 24],
... })
>>> y = pd.Series([10, 42, 31, 51, 40])
...
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == {
...     "warnings": [{"message": "Column 'leak' is 95.0% or more correlated with the target",
...                   "data_check_name": "TargetLeakageDataCheck",
...                   "level": "warning",
...                   "code": "TARGET_LEAKAGE",
...                   "details": {"columns": ["leak"], "rows": None}}],
...     "errors": [],
...     "actions": [{"code": "DROP_COL",
...                  "metadata": {"columns": ["leak"], "rows": None}}]}
...
...
>>> X['x'] = y / 2
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8, method='pearson')
>>> assert target_leakage_check.validate(X, y) == {
...     'warnings': [{'message': "Columns 'leak', 'x' are 80.0% or more correlated with the target",
...                   'data_check_name': 'TargetLeakageDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['leak', 'x'], 'rows': None},
...                   'code': 'TARGET_LEAKAGE'}],
...     'errors': [],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ['leak', 'x'], 'rows': None}}]}
class evalml.data_checks.UniquenessDataCheck(problem_type, threshold=0.5)[source]

Check if there are any columns in the input that are either too unique for classification problems or not unique enough for regression problems.

Parameters
  • problem_type (str or ProblemTypes) – The specific problem type to data check for. e.g. ‘binary’, ‘multiclass’, ‘regression, ‘time series regression’

  • threshold (float) – The threshold to set as an upper bound on uniqueness for classification type problems or lower bound on for regression type problems. Defaults to 0.50.

Methods

name

Return a name describing the data check.

uniqueness_score

Calculate a uniqueness score for the provided field. NaN values are not considered as unique values in the calculation.

validate

Check if there are any columns in the input that are too unique in the case of classification problems or not unique enough in the case of regression problems.

name(cls)

Return a name describing the data check.

static uniqueness_score(col, drop_na=True)[source]

Calculate a uniqueness score for the provided field. NaN values are not considered as unique values in the calculation.

Based on the Herfindahl–Hirschman Index.

Parameters
  • col (pd.Series) – Feature values.

  • drop_na (bool) – Whether to drop null values when computing the uniqueness score. Defaults to True.

Returns

Uniqueness score.

Return type

(float)

validate(self, X, y=None)[source]

Check if there are any columns in the input that are too unique in the case of classification problems or not unique enough in the case of regression problems.

Parameters
  • X (pd.DataFrame, np.ndarray) – Features.

  • y (pd.Series, np.ndarray) – Ignored. Defaults to None.

Returns

dict with a DataCheckWarning if there are any too unique or not

unique enough columns.

Return type

dict

Examples

>>> import pandas as pd
...
>>> df = pd.DataFrame({
...    'regression_unique_enough': [float(x) for x in range(100)],
...    'regression_not_unique_enough': [float(1) for x in range(100)]
... })
...
>>> uniqueness_check = UniquenessDataCheck(problem_type="regression", threshold=0.8)
>>> assert uniqueness_check.validate(df) == {
...     "errors": [],
...     "warnings": [{"message": "Input columns 'regression_not_unique_enough' for regression problem type are not unique enough.",
...                   "data_check_name": "UniquenessDataCheck",
...                   "level": "warning",
...                   "code": "NOT_UNIQUE_ENOUGH",
...                   "details": {"columns": ["regression_not_unique_enough"], "uniqueness_score": {"regression_not_unique_enough": 0.0}, "rows": None}}],
...     "actions": [{"code": "DROP_COL",
...                  "metadata": {"columns": ["regression_not_unique_enough"], "rows": None}}]}
...
...
>>> uniqueness_check = UniquenessDataCheck(problem_type="multiclass", threshold=0.8)
>>> assert uniqueness_check.validate(df) == {
...     'warnings': [{'message': "Input columns 'regression_unique_enough' for multiclass problem type are too unique.",
...                   'data_check_name': 'UniquenessDataCheck',
...                   'level': 'warning',
...                   'details': {'columns': ['regression_unique_enough'],
...                               'rows': None,
...                               'uniqueness_score': {'regression_unique_enough': 0.99}},
...                   'code': 'TOO_UNIQUE'}],
...     'errors': [],
...     'actions': [{'code': 'DROP_COL',
...                  'metadata': {'columns': ['regression_unique_enough'], 'rows': None}}]}
...
>>> y = pd.Series([1, 1, 1, 2, 2, 3, 3, 3])
>>> assert UniquenessDataCheck.uniqueness_score(y) == 0.65625