Exceptions¶
Exceptions used in EvalML.
Submodules¶
Package Contents¶
Classes Summary¶
Enum identifying the type of error encountered in partial dependence. |
Exceptions Summary¶
Contents¶
-
exception
evalml.exceptions.
AutoMLSearchException
[source]¶ Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective.
-
exception
evalml.exceptions.
ComponentNotYetFittedError
[source]¶ An exception to be raised when predict/predict_proba/transform is called on a component without fitting first.
-
exception
evalml.exceptions.
DataCheckInitError
[source]¶ Exception raised when a data check can’t initialize with the parameters given.
-
exception
evalml.exceptions.
MethodPropertyNotFoundError
[source]¶ Exception to raise when a class is does not have an expected method or property.
-
exception
evalml.exceptions.
MissingComponentError
[source]¶ An exception raised when a component is not found in all_components().
-
exception
evalml.exceptions.
NoPositiveLabelException
[source]¶ Exception when a particular classification label for the ‘positive’ class cannot be found in the column index or unique values.
-
exception
evalml.exceptions.
NullsInColumnWarning
[source]¶ Warning thrown when there are null values in the column of interest.
-
exception
evalml.exceptions.
ObjectiveCreationError
[source]¶ Exception when get_objective tries to instantiate an objective and required args are not provided.
-
exception
evalml.exceptions.
ObjectiveNotFoundError
[source]¶ Exception to raise when specified objective does not exist.
-
exception
evalml.exceptions.
ParameterNotUsedWarning
(components)[source]¶ Warning thrown when a pipeline parameter isn’t used in a defined pipeline’s component graph during initialization.
-
exception
evalml.exceptions.
PartialDependenceError
(message, code)[source]¶ Exception raised for all errors that partial dependence can raise.
-
class
evalml.exceptions.
PartialDependenceErrorCode
[source]¶ Enum identifying the type of error encountered in partial dependence.
Attributes
ALL_OTHER_ERRORS
all_other_errors
COMPUTED_PERCENTILES_TOO_CLOSE
computed_percentiles_too_close
FEATURE_IS_ALL_NANS
feature_is_all_nans
FEATURE_IS_MOSTLY_ONE_VALUE
feature_is_mostly_one_value
FEATURES_ARGUMENT_INCORRECT_TYPES
features_argument_incorrect_types
ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOT
ice_plot_requested_for_two_way_partial_dependence_plot
INVALID_CLASS_LABEL
invalid_class_label_requested_for_plot
INVALID_FEATURE_TYPE
invalid_feature_type
PIPELINE_IS_BASELINE
pipeline_is_baseline
TOO_MANY_FEATURES
too_many_features
TWO_WAY_REQUESTED_FOR_DATES
two_way_requested_for_dates
UNFITTED_PIPELINE
unfitted_pipeline
Methods
The name of the Enum member.
The value of the Enum member.
-
name
(self)¶ The name of the Enum member.
-
value
(self)¶ The value of the Enum member.
-
-
exception
evalml.exceptions.
PipelineNotFoundError
[source]¶ An exception raised when a particular pipeline is not found in automl search results.
-
exception
evalml.exceptions.
PipelineNotYetFittedError
[source]¶ An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first.
-
exception
evalml.exceptions.
PipelineScoreError
(exceptions, scored_successfully)[source]¶ An exception raised when a pipeline errors while scoring any objective in a list of objectives.
- Parameters
exceptions (dict) – A dictionary mapping an objective name (str) to a tuple of the form (exception, traceback). All of the objectives that errored will be stored here.
scored_successfully (dict) – A dictionary mapping an objective name (str) to a score value. All of the objectives that did not error will be stored here.