vowpal_wabbit_regressor¶
Vowpal Wabbit Regressor.
Module Contents¶
Classes Summary¶
Vowpal Wabbit Regressor. |
Contents¶
-
class
evalml.pipelines.components.estimators.regressors.vowpal_wabbit_regressor.
VowpalWabbitRegressor
(learning_rate=0.5, decay_learning_rate=1.0, power_t=0.5, passes=1, random_seed=0, **kwargs)[source]¶ Vowpal Wabbit Regressor.
- Parameters
learning_rate (float) – Boosting learning rate. Defaults to 0.5.
decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.
power_t (float) – Power on learning rate decay. Defaults to 0.5.
passes (int) – Number of training passes. Defaults to 1.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
None
model_family
ModelFamily.VOWPAL_WABBIT
modifies_features
True
modifies_target
False
name
Vowpal Wabbit Regressor
supported_problem_types
[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Feature importance for Vowpal Wabbit regressor.
Fits estimator to data.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path.
-
clone
(self)¶ Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
-
default_parameters
(cls)¶ Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
-
describe
(self, print_name=False, return_dict=False)¶ Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
-
property
feature_importance
(self)¶ Feature importance for Vowpal Wabbit regressor.
-
fit
(self, X, y=None)¶ Fits estimator to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
self
-
static
load
(file_path)¶ Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
-
needs_fitting
(self)¶ Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
-
property
parameters
(self)¶ Returns the parameters which were used to initialize the component.
-
predict
(self, X)¶ Make predictions using selected features.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
- Returns
Predicted values.
- Return type
pd.Series
- Raises
MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.
-
predict_proba
(self, X)¶ Make probability estimates for labels.
- Parameters
X (pd.DataFrame) – Features.
- Returns
Probability estimates.
- Return type
pd.Series
- Raises
MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.
-
save
(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)¶ Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.