datetime_featurizer

Transformer that can automatically extract features from datetime columns.

Module Contents

Classes Summary

DateTimeFeaturizer

Transformer that can automatically extract features from datetime columns.

Contents

class evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer(features_to_extract=None, encode_as_categories=False, time_index=None, random_seed=0, **kwargs)[source]

Transformer that can automatically extract features from datetime columns.

Parameters
  • features_to_extract (list) – List of features to extract. Valid options include “year”, “month”, “day_of_week”, “hour”. Defaults to None.

  • encode_as_categories (bool) – Whether day-of-week and month features should be encoded as pandas “category” dtype. This allows OneHotEncoders to encode these features. Defaults to False.

  • time_index (str) – Name of the column containing the datetime information used to order the data. Ignored.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

modifies_features

True

modifies_target

False

name

DateTime Featurization Component

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fit the datetime featurizer component.

fit_transform

Fits on X and transforms X.

get_feature_names

Gets the categories of each datetime feature.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

transform

Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y=None)[source]

Fit the datetime featurizer component.

Parameters
  • X (pd.DataFrame) – Input features.

  • y (pd.Series, optional) – Target data. Ignored.

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X.

Parameters
  • X (pd.DataFrame) – Data to fit and transform.

  • y (pd.Series) – Target data.

Returns

Transformed X.

Return type

pd.DataFrame

Raises

MethodPropertyNotFoundError – If transformer does not have a transform method or a component_obj that implements transform.

get_feature_names(self)[source]

Gets the categories of each datetime feature.

Returns

Dictionary, where each key-value pair is a column name and a dictionary

mapping the unique feature values to their integer encoding.

Return type

dict

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)[source]

Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns.

Parameters
  • X (pd.DataFrame) – Input features.

  • y (pd.Series, optional) – Ignored.

Returns

Transformed X

Return type

pd.DataFrame