component_base

Base class for all components.

Module Contents

Classes Summary

ComponentBase

Base class for all components.

Contents

class evalml.pipelines.components.component_base.ComponentBase(parameters=None, component_obj=None, random_seed=0, **kwargs)[source]

Base class for all components.

Parameters
  • parameters (dict) – Dictionary of parameters for the component. Defaults to None.

  • component_obj (obj) – Third-party objects useful in component implementation. Defaults to None.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fits component to data.

load

Loads component at file path.

modifies_features

Returns whether this component modifies (subsets or transforms) the features variable during transform.

modifies_target

Returns whether this component modifies (subsets or transforms) the target variable during transform.

name

Returns string name of this component.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

training_only

Returns whether or not this component should be evaluated during training-time only, or during both training and prediction time.

clone(self)[source]

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)[source]

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y=None)[source]

Fits component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features]

  • y (pd.Series, optional) – The target training data of length [n_samples]

Returns

self

Raises

MethodPropertyNotFoundError – If component does not have a fit method or a component_obj that implements fit.

static load(file_path)[source]

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

property modifies_features(cls)

Returns whether this component modifies (subsets or transforms) the features variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be used as features or targets.

property modifies_target(cls)

Returns whether this component modifies (subsets or transforms) the target variable during transform.

For Estimator objects, this attribute determines if the return value from predict or predict_proba should be used as features or targets.

property name(cls)

Returns string name of this component.

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)[source]

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

property training_only(cls)

Returns whether or not this component should be evaluated during training-time only, or during both training and prediction time.