svm_classifier

Support Vector Machine Classifier.

Module Contents

Classes Summary

SVMClassifier

Support Vector Machine Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.svm_classifier.SVMClassifier(C=1.0, kernel='rbf', gamma='auto', probability=True, random_seed=0, **kwargs)[source]

Support Vector Machine Classifier.

Parameters
  • C (float) – The regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to 1.0.

  • kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the algorithm. Defaults to “rbf”.

  • gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sigmoid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var()) as value of gamma - If “auto” (default), uses 1 / n_features

  • probability (boolean) – Whether to enable probability estimates. Defaults to True.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family

ModelFamily.SVM

modifies_features

True

modifies_target

False

name

SVM Classifier

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance only works with linear kernels.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)

Feature importance only works with linear kernels.

If the kernel isn’t linear, we return a numpy array of zeros.

Returns

Feature importance of fitted SVM classifier or a numpy array of zeroes if the kernel is not linear.

fit(self, X, y=None)

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)

Returns the parameters which were used to initialize the component.

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.