xgboost_classifier¶
XGBoost Classifier.
Module Contents¶
Classes Summary¶
XGBoost Classifier. |
Contents¶
-
class
evalml.pipelines.components.estimators.classifiers.xgboost_classifier.
XGBoostClassifier
(eta=0.1, max_depth=6, min_child_weight=1, n_estimators=100, random_seed=0, eval_metric='logloss', n_jobs=12, **kwargs)[source]¶ XGBoost Classifier.
- Parameters
eta (float) – Boosting learning rate. Defaults to 0.1.
max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a child. Defaults to 1.0
n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100.
random_seed (int) – Seed for the random number generator. Defaults to 0.
n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to 12.
Attributes
hyperparameter_ranges
{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 10), “min_child_weight”: Real(1, 10), “n_estimators”: Integer(1, 1000),}
model_family
ModelFamily.XGBOOST
modifies_features
True
modifies_target
False
name
XGBoost Classifier
SEED_MAX
None
SEED_MIN
None
supported_problem_types
[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Feature importance of fitted XGBoost classifier.
Fits XGBoost classifier component to data.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Make predictions using the fitted XGBoost classifier.
Make predictions using the fitted CatBoost classifier.
Saves component at file path.
-
clone
(self)¶ Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
-
default_parameters
(cls)¶ Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
-
describe
(self, print_name=False, return_dict=False)¶ Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
-
property
feature_importance
(self)¶ Feature importance of fitted XGBoost classifier.
-
fit
(self, X, y=None)[source]¶ Fits XGBoost classifier component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series) – The target training data of length [n_samples].
- Returns
self
-
static
load
(file_path)¶ Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
-
needs_fitting
(self)¶ Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
-
property
parameters
(self)¶ Returns the parameters which were used to initialize the component.
-
predict
(self, X)[source]¶ Make predictions using the fitted XGBoost classifier.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
- Returns
Predicted values.
- Return type
pd.DataFrame
-
predict_proba
(self, X)[source]¶ Make predictions using the fitted CatBoost classifier.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
- Returns
Predicted values.
- Return type
pd.DataFrame
-
save
(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)¶ Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.