grid_search_tuner#
Grid Search Optimizer, which generates all of the possible points to search for using a grid.
Module Contents#
Classes Summary#
Grid Search Optimizer, which generates all of the possible points to search for using a grid. |
Contents#
- class evalml.tuners.grid_search_tuner.GridSearchTuner(pipeline_hyperparameter_ranges, n_points=10, random_seed=0)[source]#
Grid Search Optimizer, which generates all of the possible points to search for using a grid.
- Parameters
pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges corresponding to a pipeline’s parameters
n_points (int) – The number of points to sample from along each dimension defined in the
space
argument. Defaults to 10.random_seed (int) – Seed for random number generator. Unused in this class, defaults to 0.
Examples
>>> tuner = GridSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b', 'c']}}, n_points=5) >>> proposal = tuner.propose() ... >>> assert proposal.keys() == {'My Component'} >>> assert proposal['My Component'] == {'param a': 0.0, 'param b': 'a'}
Determines points using a grid search approach.
>>> for each in range(5): ... print(tuner.propose()) {'My Component': {'param a': 0.0, 'param b': 'b'}} {'My Component': {'param a': 0.0, 'param b': 'c'}} {'My Component': {'param a': 10.0, 'param b': 'a'}} {'My Component': {'param a': 10.0, 'param b': 'b'}} {'My Component': {'param a': 10.0, 'param b': 'c'}}
Methods
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous parameters.
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in
self.curr_params
to be returned bypropose()
.Returns parameters from _grid_points iterations.
- add(self, pipeline_parameters, score)[source]#
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous parameters.
- Parameters
pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline
score (float) – the score obtained by evaluating the pipeline with the provided parameters
- is_search_space_exhausted(self)[source]#
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in
self.curr_params
to be returned bypropose()
.- Returns
If no more valid parameters exists in the search space, return False.
- Return type
bool
- Raises
NoParamsException – If a search space is exhausted, then this exception is thrown.