skopt_tuner#
Bayesian Optimizer.
Module Contents#
Classes Summary#
Bayesian Optimizer. |
Contents#
- evalml.tuners.skopt_tuner.logger#
- class evalml.tuners.skopt_tuner.SKOptTuner(pipeline_hyperparameter_ranges, random_seed=0)[source]#
Bayesian Optimizer.
- Parameters
pipeline_hyperparameter_ranges (dict) – A set of hyperparameter ranges corresponding to a pipeline’s parameters.
random_seed (int) – The seed for the random number generator. Defaults to 0.
Examples
>>> tuner = SKOptTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b', 'c']}}) >>> proposal = tuner.propose() ... >>> assert proposal.keys() == {'My Component'} >>> assert proposal['My Component'] == {'param a': 5.928446182250184, 'param b': 'c'}
Determines points using a Bayesian Optimizer approach.
>>> for each in range(7): ... print(tuner.propose()) {'My Component': {'param a': 8.57945617622757, 'param b': 'c'}} {'My Component': {'param a': 6.235636967859724, 'param b': 'b'}} {'My Component': {'param a': 2.9753460654447235, 'param b': 'a'}} {'My Component': {'param a': 2.7265629458011325, 'param b': 'b'}} {'My Component': {'param a': 8.121687287754932, 'param b': 'b'}} {'My Component': {'param a': 3.927847961008298, 'param b': 'c'}} {'My Component': {'param a': 3.3739616041726843, 'param b': 'b'}}
Methods
Add score to sample.
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible parameters have been scored.
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimensions and prior samples.
- add(self, pipeline_parameters, score)[source]#
Add score to sample.
- Parameters
pipeline_parameters (dict) – A dict of the parameters used to evaluate a pipeline
score (float) – The score obtained by evaluating the pipeline with the provided parameters
- Returns
None
- Raises
Exception – If skopt tuner errors.
ParameterError – If skopt receives invalid parameters.
- is_search_space_exhausted(self)#
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible parameters have been scored.
- Returns
Returns true if all possible parameters in a search space has been scored.
- Return type
bool