Source code for evalml.tuners.skopt_tuner
import pandas as pd
from skopt import Optimizer
[docs]class SKOptTuner:
"""Bayesian Optimizer"""
[docs] def __init__(self, space, random_state=0):
self.opt = Optimizer(space, "ET", acq_optimizer="sampling", random_state=random_state)
[docs] def add(self, parameters, score):
# skip adding nan scores for
if not pd.isnull(score):
return self.opt.tell(list(parameters), score)