Source code for evalml.tuners.skopt_tuner

import pandas as pd
from skopt import Optimizer


[docs]class SKOptTuner: """Bayesian Optimizer"""
[docs] def __init__(self, space, random_state=0): self.opt = Optimizer(space, "ET", acq_optimizer="sampling", random_state=random_state)
[docs] def add(self, parameters, score): # skip adding nan scores for if not pd.isnull(score): return self.opt.tell(list(parameters), score)
[docs] def propose(self): return self.opt.ask()