id_columns_data_check#
Data check that checks if any of the features are likely to be ID columns.
Module Contents#
Classes Summary#
Check if any of the features are likely to be ID columns. |
Contents#
- class evalml.data_checks.id_columns_data_check.IDColumnsDataCheck(id_threshold=1.0)[source]#
Check if any of the features are likely to be ID columns.
- Parameters
id_threshold (float) – The probability threshold to be considered an ID column. Defaults to 1.0.
Methods
Return a name describing the data check.
Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.
- name(cls)#
Return a name describing the data check.
- validate(self, X, y=None)[source]#
Check if any of the features are likely to be ID columns. Currently performs a number of simple checks.
Checks performed are:
column name is “id”
column name ends in “_id”
column contains all unique values (and is categorical / integer type)
- Parameters
X (pd.DataFrame, np.ndarray) – The input features to check.
y (pd.Series) – The target. Defaults to None. Ignored.
- Returns
A dictionary of features with column name or index and their probability of being ID columns
- Return type
dict
Examples
>>> import pandas as pd
Columns that end in “_id” and are completely unique are likely to be ID columns.
>>> df = pd.DataFrame({ ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ]
Columns named “ID” with all unique values will also be identified as ID columns.
>>> df = df.rename(columns={"customer_id": "ID"}) >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'ID' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["ID"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["ID"], "rows": None} ... } ... ] ... } ... ]
Despite being all unique, “Country_Rank” will not be identified as an ID column as id_threshold is set to 1.0 by default and its name doesn’t indicate that it’s an ID.
>>> df = pd.DataFrame({ ... "Country_Rank": [1, 2, 3, 4, 5], ... "Sales": ["very high", "high", "high", "medium", "very low"] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == []
However lowering the threshold will cause this column to be identified as an ID.
>>> id_col_check = IDColumnsDataCheck() >>> id_col_check = IDColumnsDataCheck(id_threshold=0.95) >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'Country_Rank' are 95.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "details": {"columns": ["Country_Rank"], "rows": None}, ... "code": "HAS_ID_COLUMN", ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["Country_Rank"], "rows": None} ... } ... ] ... } ... ]