exponential_smoothing_regressor#
Holt-Winters Exponential Smoothing Forecaster.
Module Contents#
Classes Summary#
Holt-Winters Exponential Smoothing Forecaster. |
Contents#
- class evalml.pipelines.components.estimators.regressors.exponential_smoothing_regressor.ExponentialSmoothingRegressor(trend=None, damped_trend=False, seasonal=None, sp=2, n_jobs=- 1, random_seed=0, **kwargs)[source]#
Holt-Winters Exponential Smoothing Forecaster.
Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.
- Parameters
trend (str) – Type of trend component. Defaults to None.
damped_trend (bool) – If the trend component should be damped. Defaults to False.
seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also be multiplicative if
0 (none of the target data is) –
None. (but AutoMLSearch wiill not tune for this. Defaults to) –
sp (int) – The number of seasonal periods to consider. Defaults to 2.
n_jobs (int or None) – Non-negative integer describing level of parallelism used for pipelines. Defaults to -1.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “additive”], “sp”: Integer(2, 8),}
model_family
ModelFamily.EXPONENTIAL_SMOOTHING
modifies_features
True
modifies_target
False
name
Exponential Smoothing Regressor
supported_problem_types
[ProblemTypes.TIME_SERIES_REGRESSION]
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Returns array of 0's with a length of 1 as feature_importance is not defined for Exponential Smoothing regressor.
Fits Exponential Smoothing Regressor to data.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Make predictions using fitted Exponential Smoothing regressor.
Make probability estimates for labels.
Saves component at file path.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- property feature_importance(self)#
Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing regressor.
- fit(self, X, y=None)[source]#
Fits Exponential Smoothing Regressor to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.
y (pd.Series) – The target training data of length [n_samples].
- Returns
self
- Raises
ValueError – If y was not passed in.
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- predict(self, X, y=None)[source]#
Make predictions using fitted Exponential Smoothing regressor.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast horizon.
y (pd.Series) – Target data.
- Returns
Predicted values.
- Return type
pd.Series
- predict_proba(self, X)#
Make probability estimates for labels.
- Parameters
X (pd.DataFrame) – Features.
- Returns
Probability estimates.
- Return type
pd.Series
- Raises
MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.