replace_nullable_types#
Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.
Module Contents#
Classes Summary#
Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML. |
Contents#
- class evalml.pipelines.components.transformers.preprocessing.replace_nullable_types.ReplaceNullableTypes(random_seed=0, **kwargs)[source]#
Transformer to replace features with the new nullable dtypes with a dtype that is compatible in EvalML.
Attributes
hyperparameter_ranges
None
modifies_features
True
modifies_target
{}
name
Replace Nullable Types Transformer
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits component to data.
Substitutes non-nullable types for the new pandas nullable types in the data and target data.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)[source]#
Fits component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
self
- fit_transform(self, X, y=None)[source]#
Substitutes non-nullable types for the new pandas nullable types in the data and target data.
- Parameters
X (pd.DataFrame, optional) – Input features.
y (pd.Series) – Target data.
- Returns
The input features and target data with the non-nullable types set.
- Return type
tuple of pd.DataFrame, pd.Series
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)[source]#
Transforms data by replacing columns that contain nullable types with the appropriate replacement type.
“float64” for nullable integers and “category” for nullable booleans.
- Parameters
X (pd.DataFrame) – Data to transform
y (pd.Series, optional) – Target data to transform
- Returns
Transformed X pd.Series: Transformed y
- Return type
pd.DataFrame