target_imputer#
Component that imputes missing target data according to a specified imputation strategy.
Module Contents#
Classes Summary#
Imputes missing target data according to a specified imputation strategy. |
|
A version of the ComponentBaseMeta class which handles when input features is None. |
Contents#
- class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer(impute_strategy='most_frequent', fill_value=None, random_seed=0, **kwargs)[source]#
Imputes missing target data according to a specified imputation strategy.
- Parameters
impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “median”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for object data types. Defaults to “most_frequent”.
fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace missing data. Defaults to None which uses 0 when imputing numerical data and “missing_value” for strings or object data types.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}
modifies_features
False
modifies_target
True
name
Target Imputer
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits imputer to target data. 'None' values are converted to np.nan before imputation and are treated as the same.
Fits on and transforms the input target data.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input target data by imputing missing values. 'None' and np.nan values are treated as the same.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y)[source]#
Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the same.
- Parameters
X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]. Ignored.
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
self
- Raises
TypeError – If target is filled with all null values.
- fit_transform(self, X, y)[source]#
Fits on and transforms the input target data.
- Parameters
X (pd.DataFrame) – Features. Ignored.
y (pd.Series) – Target data to impute.
- Returns
The original X, transformed y
- Return type
(pd.DataFrame, pd.Series)
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y)[source]#
Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.
- Parameters
X (pd.DataFrame) – Features. Ignored.
y (pd.Series) – Target data to impute.
- Returns
The original X, transformed y
- Return type
(pd.DataFrame, pd.Series)
- class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta[source]#
A version of the ComponentBaseMeta class which handles when input features is None.
Attributes
FIT_METHODS
[‘fit’, ‘fit_transform’]
METHODS_TO_CHECK
[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’]
PROPERTIES_TO_CHECK
[‘feature_importance’]
Methods
check_for_fit wraps a method that validates if self._is_fitted is True.
Register a virtual subclass of an ABC.
Wrapper for the fit method.
- classmethod check_for_fit(cls, method)[source]#
check_for_fit wraps a method that validates if self._is_fitted is True.
- Parameters
method (callable) – Method to wrap.
- Raises
ComponentNotYetFittedError – If component is not fitted.
- Returns
The wrapped input method.
- register(cls, subclass)#
Register a virtual subclass of an ABC.
Returns the subclass, to allow usage as a class decorator.
- classmethod set_fit(cls, method)#
Wrapper for the fit method.