Source code for evalml.pipelines.components.transformers.imputers.target_imputer
"""Component that imputes missing target data according to a specified imputation strategy."""
from functools import wraps
import pandas as pd
import woodwork as ww
from sklearn.impute import SimpleImputer as SkImputer
from woodwork.logical_types import Categorical
from evalml.exceptions import ComponentNotYetFittedError
from evalml.pipelines.components import ComponentBaseMeta
from evalml.pipelines.components.transformers import Transformer
from evalml.utils import infer_feature_types
[docs]class TargetImputerMeta(ComponentBaseMeta):
"""A version of the ComponentBaseMeta class which handles when input features is None."""
[docs] @classmethod
def check_for_fit(cls, method):
"""`check_for_fit` wraps a method that validates if `self._is_fitted` is `True`.
Args:
method (callable): Method to wrap.
Raises:
ComponentNotYetFittedError: If component is not fitted.
Returns:
The wrapped input method.
"""
@wraps(method)
def _check_for_fit(self, X=None, y=None):
klass = type(self).__name__
if not self._is_fitted and self.needs_fitting:
raise ComponentNotYetFittedError(
f"This {klass} is not fitted yet. You must fit {klass} before calling {method.__name__}."
)
else:
return method(self, X, y)
return _check_for_fit
[docs]class TargetImputer(Transformer, metaclass=TargetImputerMeta):
"""Imputes missing target data according to a specified imputation strategy.
Args:
impute_strategy (string): Impute strategy to use. Valid values include "mean", "median", "most_frequent", "constant" for
numerical data, and "most_frequent", "constant" for object data types. Defaults to "most_frequent".
fill_value (string): When impute_strategy == "constant", fill_value is used to replace missing data.
Defaults to None which uses 0 when imputing numerical data and "missing_value" for strings or object data types.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
name = "Target Imputer"
hyperparameter_ranges = {"impute_strategy": ["mean", "median", "most_frequent"]}
"""{
"impute_strategy": ["mean", "median", "most_frequent"]
}"""
modifies_features = False
modifies_target = True
def __init__(
self, impute_strategy="most_frequent", fill_value=None, random_seed=0, **kwargs
):
parameters = {"impute_strategy": impute_strategy, "fill_value": fill_value}
parameters.update(kwargs)
imputer = SkImputer(strategy=impute_strategy, fill_value=fill_value, **kwargs)
super().__init__(
parameters=parameters, component_obj=imputer, random_seed=random_seed
)
[docs] def fit(self, X, y):
"""Fits imputer to target data. 'None' values are converted to np.nan before imputation and are treated as the same.
Args:
X (pd.DataFrame or np.ndarray): The input training data of shape [n_samples, n_features]. Ignored.
y (pd.Series, optional): The target training data of length [n_samples].
Returns:
self
Raises:
TypeError: If target is filled with all null values.
"""
if y is None:
return self
y = infer_feature_types(y)
if all(y.isnull()):
raise TypeError("Provided target full of nulls.")
y = y.to_frame()
# Convert all bool dtypes to category for fitting
if (y.dtypes == bool).all():
y = y.astype("category")
self._component_obj.fit(y)
return self
[docs] def transform(self, X, y):
"""Transforms input target data by imputing missing values. 'None' and np.nan values are treated as the same.
Args:
X (pd.DataFrame): Features. Ignored.
y (pd.Series): Target data to impute.
Returns:
(pd.DataFrame, pd.Series): The original X, transformed y
"""
if X is not None:
X = infer_feature_types(X)
if y is None:
return X, None
y_ww = infer_feature_types(y)
y_df = y_ww.ww.to_frame()
# Return early since bool dtype doesn't support nans and sklearn errors if all cols are bool
if (y_df.dtypes == bool).all():
return X, y_ww
transformed = self._component_obj.transform(y_df)
y_t = pd.Series(transformed[:, 0], index=y_ww.index)
# TODO: Fix this after WW adds inference of object type booleans to BooleanNullable
# Iterate through categorical columns that might have been boolean and convert them back to boolean
if {True, False}.issubset(set(y_t.unique())) and isinstance(
y_ww.ww.logical_type, Categorical
):
y_t = y_t.astype(bool)
y_t = ww.init_series(
y_t, logical_type=y_ww.ww.logical_type, semantic_tags=y_ww.ww.semantic_tags
)
return X, y_t
[docs] def fit_transform(self, X, y):
"""Fits on and transforms the input target data.
Args:
X (pd.DataFrame): Features. Ignored.
y (pd.Series): Target data to impute.
Returns:
(pd.DataFrame, pd.Series): The original X, transformed y
"""
return self.fit(X, y).transform(X, y)