"""Data check that checks if any of the features are highly correlated with the target by using mutual information or Pearson correlation."""
from evalml.data_checks import (
DataCheck,
DataCheckActionCode,
DataCheckActionOption,
DataCheckMessageCode,
DataCheckWarning,
)
from evalml.utils.woodwork_utils import infer_feature_types, numeric_and_boolean_ww
[docs]class TargetLeakageDataCheck(DataCheck):
"""Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.
If `method='mutual'`, this data check uses mutual information and supports all target and feature types.
Otherwise, if `method='pearson'`, it uses Pearson correlation and only supports binary with numeric and boolean dtypes.
Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].
Args:
pct_corr_threshold (float): The correlation threshold to be considered leakage. Defaults to 0.95.
method (string): The method to determine correlation. Use 'mutual' for mutual information, otherwise 'pearson' for Pearson correlation. Defaults to 'mutual'.
"""
def __init__(self, pct_corr_threshold=0.95, method="mutual"):
if pct_corr_threshold < 0 or pct_corr_threshold > 1:
raise ValueError(
"pct_corr_threshold must be a float between 0 and 1, inclusive.",
)
if method not in ["mutual", "pearson"]:
raise ValueError(f"Method '{method}' not in ['mutual', 'pearson']")
self.pct_corr_threshold = pct_corr_threshold
self.method = method
def _calculate_pearson(self, X, y):
highly_corr_cols = []
X_num = X.ww.select(include=numeric_and_boolean_ww)
if (
y.ww.logical_type.type_string not in numeric_and_boolean_ww
or len(X_num.columns) == 0
):
return highly_corr_cols
highly_corr_cols = [
label
for label, col in X_num.iteritems()
if abs(y.corr(col)) >= self.pct_corr_threshold
]
return highly_corr_cols
def _calculate_mutual_information(self, X, y):
highly_corr_cols = []
for col in X.columns:
cols_to_compare = X.ww[[col]]
cols_to_compare.ww[str(col) + "y"] = y
mutual_info = cols_to_compare.ww.mutual_information()
if (
len(mutual_info) > 0
and mutual_info["mutual_info"].iloc[0] > self.pct_corr_threshold
):
highly_corr_cols.append(col)
return highly_corr_cols
[docs] def validate(self, X, y):
"""Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.
If `method='mutual'`, supports all target and feature types. Otherwise, if `method='pearson'` only supports binary with numeric and boolean dtypes.
Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].
Args:
X (pd.DataFrame, np.ndarray): The input features to check.
y (pd.Series, np.ndarray): The target data.
Returns:
dict (DataCheckWarning): dict with a DataCheckWarning if target leakage is detected.
Examples:
>>> import pandas as pd
Any columns that are strongly correlated with the target will raise a warning. This could be indicative of
data leakage.
>>> X = pd.DataFrame({
... "leak": [10, 42, 31, 51, 61] * 15,
... "x": [42, 54, 12, 64, 12] * 15,
... "y": [13, 5, 13, 74, 24] * 15,
... })
>>> y = pd.Series([10, 42, 31, 51, 40] * 15)
...
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Column 'leak' is 95.0% or more correlated with the target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "code": "TARGET_LEAKAGE",
... "details": {"columns": ["leak"], "rows": None},
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak"], "rows": None}
... }
... ]
... }
... ]
The default method can be changed to pearson from mutual information.
>>> X["x"] = y / 2
>>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.8, method="pearson")
>>> assert target_leakage_check.validate(X, y) == [
... {
... "message": "Columns 'leak', 'x' are 80.0% or more correlated with the target",
... "data_check_name": "TargetLeakageDataCheck",
... "level": "warning",
... "details": {"columns": ["leak", "x"], "rows": None},
... "code": "TARGET_LEAKAGE",
... "action_options": [
... {
... "code": "DROP_COL",
... "data_check_name": "TargetLeakageDataCheck",
... "parameters": {},
... "metadata": {"columns": ["leak", "x"], "rows": None}
... }
... ]
... }
... ]
"""
messages = []
X = infer_feature_types(X)
y = infer_feature_types(y)
if self.method == "pearson":
highly_corr_cols = self._calculate_pearson(X, y)
else:
highly_corr_cols = self._calculate_mutual_information(X, y)
warning_msg_singular = "Column {} is {}% or more correlated with the target"
warning_msg_plural = "Columns {} are {}% or more correlated with the target"
if highly_corr_cols:
if len(highly_corr_cols) == 1:
warning_msg = warning_msg_singular.format(
"'{}'".format(str(highly_corr_cols[0])),
self.pct_corr_threshold * 100,
)
else:
warning_msg = warning_msg_plural.format(
(", ").join(["'{}'".format(str(col)) for col in highly_corr_cols]),
self.pct_corr_threshold * 100,
)
messages.append(
DataCheckWarning(
message=warning_msg,
data_check_name=self.name,
message_code=DataCheckMessageCode.TARGET_LEAKAGE,
details={"columns": highly_corr_cols},
action_options=[
DataCheckActionOption(
DataCheckActionCode.DROP_COL,
data_check_name=self.name,
metadata={"columns": highly_corr_cols},
),
],
).to_dict(),
)
return messages