Source code for evalml.pipelines.components.transformers.imputers.knn_imputer
"""Component that imputes missing data according to a specified imputation strategy."""
import numpy as np
import pandas as pd
import woodwork
from sklearn.impute import KNNImputer as Sk_KNNImputer
from evalml.pipelines.components.transformers import Transformer
from evalml.pipelines.components.utils import drop_natural_language_columns
from evalml.utils import infer_feature_types
[docs]class KNNImputer(Transformer):
"""Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are ignored.
Args:
number_neighbors (int): Number of nearest neighbors for KNN to search for. Defaults to 3.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
name = "KNN Imputer"
def __init__(self, number_neighbors=3, random_seed=0, **kwargs):
parameters = {"number_neighbors": number_neighbors}
parameters.update(kwargs)
imputer = Sk_KNNImputer(
n_neighbors=number_neighbors,
missing_values=np.nan,
**kwargs,
)
self._all_null_cols = None
super().__init__(
parameters=parameters,
component_obj=imputer,
random_seed=random_seed,
)
[docs] def fit(self, X, y=None):
"""Fits imputer to data. 'None' values are converted to np.nan before imputation and are treated as the same.
Args:
X (pd.DataFrame or np.ndarray): the input training data of shape [n_samples, n_features]
y (pd.Series, optional): the target training data of length [n_samples]
Returns:
self
Raises:
ValueError: if the KNNImputer receives a dataframe with both Boolean and Categorical data.
"""
X = infer_feature_types(X)
nan_ratio = X.ww.describe().loc["nan_count"] / X.shape[0]
self._all_null_cols = nan_ratio[nan_ratio == 1].index.tolist()
X, _ = drop_natural_language_columns(X)
# If the Dataframe only had natural language columns, do nothing.
if X.shape[1] == 0:
return self
self._component_obj.fit(X, y)
return self
[docs] def transform(self, X, y=None):
"""Transforms input by imputing missing values. 'None' and np.nan values are treated as the same.
Args:
X (pd.DataFrame): Data to transform.
y (pd.Series, optional): Ignored.
Returns:
pd.DataFrame: Transformed X
"""
X = infer_feature_types(X)
not_all_null_cols = [col for col in X.columns if col not in self._all_null_cols]
original_index = X.index
# Drop natural language columns and transform the other columns
X_t, natural_language_cols = drop_natural_language_columns(X)
if X_t.shape[1] == 0:
return X
not_all_null_or_natural_language_cols = [
col for col in not_all_null_cols if col not in natural_language_cols
]
X_t = self._component_obj.transform(X_t)
X_t = pd.DataFrame(X_t, columns=not_all_null_or_natural_language_cols)
X_schema = X.ww.schema
X_bool_nullable_cols = X_schema._filter_cols(include=["BooleanNullable"])
new_ltypes_for_bool_nullable_cols = {
col: "Boolean" for col in X_bool_nullable_cols
}
# Add back in natural language columns, unchanged
if len(natural_language_cols) > 0:
X_t = woodwork.concat_columns([X_t, X[natural_language_cols]])
X_t.ww.init(
schema=X_schema,
logical_types=new_ltypes_for_bool_nullable_cols,
)
if not_all_null_or_natural_language_cols:
X_t.index = original_index
return X_t
[docs] def fit_transform(self, X, y=None):
"""Fits on X and transforms X.
Args:
X (pd.DataFrame): Data to fit and transform
y (pd.Series, optional): Target data.
Returns:
pd.DataFrame: Transformed X
"""
return self.fit(X, y).transform(X, y)