Source code for evalml.pipelines.components.transformers.preprocessing.decomposer

"""Component that removes trends from time series and returns the decomposed components."""
from abc import abstractmethod

from evalml.pipelines.components.transformers.transformer import Transformer


[docs]class Decomposer(Transformer): """Component that removes trends and seasonality from time series and returns the decomposed components. Args: parameters (dict): Dictionary of parameters to pass to component object. component_obj (class) : Instance of a detrender/deseasonalizer class. random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "Decomposer" hyperparameter_ranges = None modifies_features = False modifies_target = True def __init__(self, parameters=None, component_obj=None, random_seed=0, **kwargs): super().__init__( parameters=parameters, component_obj=component_obj, random_seed=random_seed, **kwargs, )
[docs] @abstractmethod def get_trend_dataframe(self, y): """Return a list of dataframes, each with 3 columns: trend, seasonality, residual."""
[docs] @abstractmethod def inverse_transform(self, y): """Add the trend + seasonality back to y."""