Source code for evalml.pipelines.components.transformers.preprocessing.decomposer
"""Component that removes trends from time series and returns the decomposed components."""
from abc import abstractmethod
from evalml.pipelines.components.transformers.transformer import Transformer
[docs]class Decomposer(Transformer):
"""Component that removes trends and seasonality from time series and returns the decomposed components.
Args:
parameters (dict): Dictionary of parameters to pass to component object.
component_obj (class) : Instance of a detrender/deseasonalizer class.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
name = "Decomposer"
hyperparameter_ranges = None
modifies_features = False
modifies_target = True
def __init__(self, parameters=None, component_obj=None, random_seed=0, **kwargs):
super().__init__(
parameters=parameters,
component_obj=component_obj,
random_seed=random_seed,
**kwargs,
)
[docs] @abstractmethod
def get_trend_dataframe(self, y):
"""Return a list of dataframes, each with 3 columns: trend, seasonality, residual."""