Exploring search results¶
After finishing a pipeline search, we can inspect the results. First, let’s build a search of 10 different pipelines to explore.
[1]:
import evalml
from evalml import AutoClassificationSearch
X, y = evalml.demos.load_breast_cancer()
automl = AutoClassificationSearch(objective="f1",
max_pipelines=5)
automl.search(X, y)
*****************************
* Beginning pipeline search *
*****************************
Optimizing for F1. Greater score is better.
Searching up to 5 pipelines.
Possible model types: random_forest, linear_model, xgboost
✔ XGBoost Classifier w/ One Hot Encod... 20%|██ | Elapsed:00:02
✔ XGBoost Classifier w/ One Hot Encod... 40%|████ | Elapsed:00:04
✔ Random Forest Classifier w/ One Hot... 60%|██████ | Elapsed:00:14
✔ XGBoost Classifier w/ One Hot Encod... 80%|████████ | Elapsed:00:17
✔ Logistic Regression Classifier w/ O... 100%|██████████| Elapsed:00:18
✔ Optimization finished 100%|██████████| Elapsed:00:18
View Rankings¶
A summary of all the pipelines built can be returned as a pandas DataFrame. It is sorted by score. EvalML knows based on our objective function whether higher or lower is better.
[2]:
automl.rankings
[2]:
id | pipeline_class_name | score | high_variance_cv | parameters | |
---|---|---|---|---|---|
0 | 2 | RFClassificationPipeline | 0.973477 | False | {'n_estimators': 569, 'max_depth': 22, 'impute... |
1 | 4 | LogisticRegressionPipeline | 0.971949 | False | {'penalty': 'l2', 'C': 8.444214828324364, 'imp... |
2 | 1 | XGBoostPipeline | 0.964896 | False | {'eta': 0.38438170729269994, 'min_child_weight... |
3 | 0 | XGBoostPipeline | 0.959401 | False | {'eta': 0.5928446182250184, 'min_child_weight'... |
4 | 3 | XGBoostPipeline | 0.948566 | False | {'eta': 0.5288949197529046, 'min_child_weight'... |
Describe Pipeline¶
Each pipeline is given an id
. We can get more information about any particular pipeline using that id
. Here, we will get more information about the pipeline with id = 0
.
[3]:
automl.describe_pipeline(0)
********************************************************************************************
* XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model *
********************************************************************************************
Problem Types: Binary Classification, Multiclass Classification
Model Type: XGBoost Classifier
Objective to Optimize: F1 (greater is better)
Number of features: 18
Pipeline Steps
==============
1. One Hot Encoder
2. Simple Imputer
* impute_strategy : most_frequent
3. RF Classifier Select From Model
* percent_features : 0.6273280598181127
* threshold : -inf
4. XGBoost Classifier
* eta : 0.5928446182250184
* max_depth : 4
* min_child_weight : 8.598391737229157
Training
========
Training for Binary Classification problems.
Total training time (including CV): 2.4 seconds
Cross Validation
----------------
F1 Precision Recall AUC Log Loss MCC # Training # Testing
0 0.979 0.975 0.983 0.998 0.081 0.944 379.000 190.000
1 0.954 0.950 0.958 0.984 0.142 0.876 379.000 190.000
2 0.945 0.949 0.941 0.981 0.159 0.853 380.000 189.000
mean 0.959 0.958 0.961 0.988 0.127 0.891 - -
std 0.018 0.015 0.021 0.009 0.041 0.047 - -
coef of var 0.018 0.015 0.022 0.009 0.324 0.053 - -
Get Pipeline¶
We can get the object of any pipeline via their id
as well:
[4]:
automl.get_pipeline(0)
[4]:
<evalml.pipelines.classification.xgboost.XGBoostPipeline at 0x7f420f818e48>
Get best pipeline¶
If we specifically want to get the best pipeline, there is a convenient access
[5]:
automl.best_pipeline
[5]:
<evalml.pipelines.classification.random_forest.RFClassificationPipeline at 0x7f420efdcc18>
Feature Importances¶
We can get the feature importances of the resulting pipeline
[6]:
pipeline = automl.get_pipeline(0)
pipeline.feature_importances
[6]:
feature | importance | |
---|---|---|
0 | worst perimeter | 0.341811 |
1 | worst radius | 0.184930 |
2 | mean concave points | 0.163518 |
3 | worst concave points | 0.115095 |
4 | mean concavity | 0.047942 |
5 | worst area | 0.038873 |
6 | worst concavity | 0.032179 |
7 | area error | 0.028544 |
8 | worst texture | 0.022472 |
9 | worst symmetry | 0.015158 |
10 | mean smoothness | 0.005401 |
11 | radius error | 0.004078 |
12 | mean radius | 0.000000 |
13 | mean perimeter | 0.000000 |
14 | mean area | 0.000000 |
15 | mean compactness | 0.000000 |
16 | worst compactness | 0.000000 |
17 | worst fractal dimension | 0.000000 |
We can also create a bar plot of the feature importances
[7]:
pipeline.plot.feature_importances()
Plot ROC¶
For binary classification tasks, we can also plot the ROC plot of a specific pipeline:
[8]:
automl.plot.generate_roc_plot(0)
Access raw results¶
You can also get access to all the underlying data like this
[9]:
automl.results
[9]:
{'pipeline_results': {0: {'id': 0,
'pipeline_class_name': 'XGBoostPipeline',
'pipeline_name': 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model',
'parameters': {'eta': 0.5928446182250184,
'min_child_weight': 8.598391737229157,
'max_depth': 4,
'impute_strategy': 'most_frequent',
'percent_features': 0.6273280598181127},
'score': 0.9594006908767779,
'high_variance_cv': False,
'training_time': 2.434983491897583,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9790794979079498),
('Precision', 0.975),
('Recall', 0.9831932773109243),
('AUC', 0.9981062847674281),
('Log Loss', 0.08064971198327839),
('MCC', 0.9436801731761278),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.01408451, 0.01408451, 0.02816901,
0.02816901, 0.08450704, 0.08450704, 0.09859155, 0.09859155,
0.45070423, 0.50704225, 0.53521127, 0.56338028, 0.6056338 ,
0.63380282, 0.69014085, 0.87323944, 0.90140845, 1. ]),
array([0. , 0.12605042, 0.13445378, 0.1512605 , 0.16806723,
0.18487395, 0.22689076, 0.24369748, 0.26890756, 0.29411765,
0.31092437, 0.31932773, 0.35294118, 0.44537815, 0.46218487,
0.49579832, 0.5210084 , 0.7394958 , 0.77310924, 0.78991597,
0.80672269, 0.96638655, 0.96638655, 0.97478992, 0.97478992,
0.98319328, 0.98319328, 0.99159664, 0.99159664, 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ]),
array([1.9937439 , 0.99374396, 0.9934169 , 0.9933848 , 0.9930241 ,
0.9929664 , 0.99256283, 0.9924057 , 0.9923273 , 0.9919527 ,
0.99182206, 0.99180686, 0.991738 , 0.99044997, 0.9904199 ,
0.9895264 , 0.9882288 , 0.9592414 , 0.9589123 , 0.9557933 ,
0.9548818 , 0.7891393 , 0.7523144 , 0.7496705 , 0.72532034,
0.66525084, 0.35472092, 0.33916065, 0.30189806, 0.28884584,
0.0441243 , 0.038174 , 0.03558043, 0.03012667, 0.02291998,
0.01877152, 0.01763946, 0.00880799, 0.00874277, 0.00827175],
dtype=float32))),
('Confusion Matrix', 0 1
0 68 3
1 2 117),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9790794979079498},
{'all_objective_scores': OrderedDict([('F1', 0.9539748953974896),
('Precision', 0.95),
('Recall', 0.957983193277311),
('AUC', 0.9836075275180495),
('Log Loss', 0.14185435472938576),
('MCC', 0.8760200852880281),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.04225352, 0.04225352, 0.05633803, 0.05633803,
0.09859155, 0.09859155, 0.12676056, 0.12676056, 0.15492958,
0.15492958, 0.16901408, 0.16901408, 0.21126761, 0.23943662,
0.25352113, 0.33802817, 0.46478873, 0.49295775, 0.56338028,
0.5915493 , 0.71830986, 0.76056338, 0.78873239, 0.8028169 ,
1. ]),
array([0. , 0.09243697, 0.10084034, 0.16806723, 0.17647059,
0.20168067, 0.21008403, 0.29411765, 0.30252101, 0.31092437,
0.36134454, 0.39495798, 0.41176471, 0.42857143, 0.43697479,
0.45378151, 0.49579832, 0.5210084 , 0.54621849, 0.56302521,
0.59663866, 0.60504202, 0.62184874, 0.65546218, 0.68907563,
0.71428571, 0.74789916, 0.76470588, 0.80672269, 0.82352941,
0.92436975, 0.92436975, 0.94117647, 0.94117647, 0.95798319,
0.95798319, 0.96638655, 0.96638655, 0.97478992, 0.97478992,
0.99159664, 0.99159664, 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. ]),
array([1.9917016 , 0.99170154, 0.99118173, 0.99113 , 0.99107367,
0.99095434, 0.9903882 , 0.9900671 , 0.9890872 , 0.9874872 ,
0.9870094 , 0.9863927 , 0.9848595 , 0.98429155, 0.9837299 ,
0.98244077, 0.97697645, 0.9723681 , 0.9694117 , 0.96865326,
0.96827 , 0.9661397 , 0.965724 , 0.96271837, 0.95904344,
0.95776254, 0.9541006 , 0.9514202 , 0.9272428 , 0.9244033 ,
0.729121 , 0.7108931 , 0.66336167, 0.6254638 , 0.5943486 ,
0.44532707, 0.372028 , 0.3703832 , 0.36668354, 0.28058025,
0.21105221, 0.1829909 , 0.18207934, 0.09410949, 0.07737678,
0.06360406, 0.06231202, 0.03264038, 0.02874083, 0.02029958,
0.01903956, 0.0164301 , 0.01615754, 0.01451924, 0.01421483,
0.01351323], dtype=float32))),
('Confusion Matrix', 0 1
0 65 6
1 5 114),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9539748953974896},
{'all_objective_scores': OrderedDict([('F1', 0.9451476793248945),
('Precision', 0.9491525423728814),
('Recall', 0.9411764705882353),
('AUC', 0.9807923169267707),
('Log Loss', 0.15895638581877822),
('MCC', 0.8530080688400891),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.01428571, 0.01428571, 0.01428571, 0.01428571, 0.01428571,
0.01428571, 0.01428571, 0.01428571, 0.02857143, 0.02857143,
0.04285714, 0.04285714, 0.05714286, 0.05714286, 0.07142857,
0.07142857, 0.08571429, 0.08571429, 0.11428571, 0.11428571,
0.14285714, 0.15714286, 0.22857143, 0.25714286, 0.38571429,
0.44285714, 0.54285714, 0.6 , 0.64285714, 0.67142857,
0.7 , 1. ]),
array([0. , 0.18487395, 0.22689076, 0.23529412, 0.26890756,
0.29411765, 0.31092437, 0.33613445, 0.34453782, 0.36134454,
0.3697479 , 0.40336134, 0.42857143, 0.44537815, 0.46218487,
0.47058824, 0.50420168, 0.5210084 , 0.53781513, 0.55462185,
0.59663866, 0.65546218, 0.70588235, 0.70588235, 0.78991597,
0.78991597, 0.90756303, 0.90756303, 0.91596639, 0.91596639,
0.94117647, 0.94117647, 0.97478992, 0.97478992, 0.99159664,
0.99159664, 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. ]),
array([1.9912372 , 0.99123716, 0.99071807, 0.9905557 , 0.989953 ,
0.98967326, 0.9892195 , 0.9890625 , 0.9883869 , 0.9881627 ,
0.98800814, 0.9873002 , 0.9866671 , 0.9863214 , 0.98610663,
0.98588854, 0.9824102 , 0.9817692 , 0.9788537 , 0.9763956 ,
0.9736345 , 0.9734056 , 0.9697179 , 0.96919906, 0.9408594 ,
0.93151474, 0.70544225, 0.6761148 , 0.6481446 , 0.56992525,
0.5188037 , 0.514126 , 0.40845907, 0.35379264, 0.33419853,
0.22962442, 0.22778042, 0.09829229, 0.05558122, 0.04127952,
0.03519488, 0.01854065, 0.01816005, 0.01665189, 0.01571225,
0.01527028, 0.01430225], dtype=float32))),
('Confusion Matrix', 0 1
0 64 6
1 7 112),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9451476793248945}]},
1: {'id': 1,
'pipeline_class_name': 'XGBoostPipeline',
'pipeline_name': 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model',
'parameters': {'eta': 0.38438170729269994,
'min_child_weight': 3.677811458900251,
'max_depth': 13,
'impute_strategy': 'median',
'percent_features': 0.793807787701838},
'score': 0.9648960642685166,
'high_variance_cv': False,
'training_time': 2.488259792327881,
'cv_data': [{'all_objective_scores': OrderedDict([('F1', 0.975),
('Precision', 0.9669421487603306),
('Recall', 0.9831932773109243),
('AUC', 0.9966859983429992),
('Log Loss', 0.07756886413615001),
('MCC', 0.932389423285531),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0.01408451, 0.01408451, 0.02816901, 0.02816901, 0.08450704,
0.08450704, 0.09859155, 0.09859155, 0.91549296, 0.94366197,
1. ]),
array([0. , 0.00840336, 0.32773109, 0.34453782, 0.87394958,
0.87394958, 0.96638655, 0.96638655, 0.98319328, 0.98319328,
0.99159664, 0.99159664, 1. , 1. , 1. ,
1. ]),
array([1.9981308 , 0.99813086, 0.9959843 , 0.99595356, 0.9659731 ,
0.9646539 , 0.8474301 , 0.8226159 , 0.7340414 , 0.43467796,
0.35439238, 0.3156159 , 0.2735931 , 0.00334718, 0.00322822,
0.00207397], dtype=float32))),
('Confusion Matrix', 0 1
0 67 4
1 2 117),
('# Training', 379),
('# Testing', 190)]),
'score': 0.975},
{'all_objective_scores': OrderedDict([('F1', 0.9661016949152542),
('Precision', 0.9743589743589743),
('Recall', 0.957983193277311),
('AUC', 0.9899396378269618),
('Log Loss', 0.1157939842209759),
('MCC', 0.9107843947529072),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.01408451,
0.01408451, 0.02816901, 0.02816901, 0.04225352, 0.04225352,
0.05633803, 0.05633803, 0.14084507, 0.14084507, 0.16901408,
0.16901408, 0.22535211, 0.49295775, 0.52112676, 0.66197183,
0.73239437, 0.81690141, 0.84507042, 0.87323944, 0.90140845,
0.97183099, 1. ]),
array([0. , 0.01680672, 0.08403361, 0.11764706, 0.24369748,
0.2605042 , 0.26890756, 0.29411765, 0.57983193, 0.57983193,
0.91596639, 0.91596639, 0.94957983, 0.94957983, 0.95798319,
0.95798319, 0.98319328, 0.98319328, 0.99159664, 0.99159664,
1. , 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. ]),
array([1.9985983e+00, 9.9859840e-01, 9.9832827e-01, 9.9818736e-01,
9.9679202e-01, 9.9674618e-01, 9.9667656e-01, 9.9658316e-01,
9.9108350e-01, 9.9083334e-01, 8.2265288e-01, 8.2121074e-01,
7.2431225e-01, 6.3007897e-01, 5.7422268e-01, 4.5153135e-01,
3.5701558e-01, 1.7140125e-01, 1.4191566e-01, 9.0782769e-02,
6.7663342e-02, 5.5308960e-02, 4.5769266e-03, 4.5044953e-03,
3.2702754e-03, 3.2080656e-03, 2.9759661e-03, 2.8877873e-03,
2.4864469e-03, 2.3314529e-03, 1.5917335e-03, 1.3716089e-03],
dtype=float32))),
('Confusion Matrix', 0 1
0 68 3
1 5 114),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9661016949152542},
{'all_objective_scores': OrderedDict([('F1', 0.9535864978902954),
('Precision', 0.9576271186440678),
('Recall', 0.9495798319327731),
('AUC', 0.9863145258103241),
('Log Loss', 0.14040204006858248),
('MCC', 0.8756320549488144),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.01428571,
0.01428571, 0.02857143, 0.02857143, 0.04285714, 0.04285714,
0.08571429, 0.08571429, 0.1 , 0.1 , 0.11428571,
0.11428571, 0.54285714, 0.57142857, 0.58571429, 0.61428571,
0.68571429, 0.71428571, 0.8 , 1. ]),
array([0. , 0.00840336, 0.04201681, 0.05882353, 0.1512605 ,
0.21008403, 0.23529412, 0.30252101, 0.31932773, 0.33613445,
0.35294118, 0.62184874, 0.65546218, 0.72268908, 0.72268908,
0.73109244, 0.73109244, 0.79831933, 0.79831933, 0.94957983,
0.94957983, 0.96638655, 0.96638655, 0.97478992, 0.97478992,
1. , 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. ]),
array([1.998668 , 0.99866796, 0.99859375, 0.99848515, 0.99842656,
0.9980634 , 0.9980153 , 0.9971877 , 0.9971783 , 0.9970214 ,
0.99701583, 0.9893309 , 0.98911965, 0.9835843 , 0.9835355 ,
0.98161846, 0.9813965 , 0.9743532 , 0.97359157, 0.62105346,
0.47956562, 0.46517578, 0.42012912, 0.36913908, 0.25974 ,
0.16882712, 0.00341962, 0.00341539, 0.00333552, 0.00333485,
0.00295924, 0.00287893, 0.00215919, 0.00207186], dtype=float32))),
('Confusion Matrix', 0 1
0 65 5
1 6 113),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9535864978902954}]},
2: {'id': 2,
'pipeline_class_name': 'RFClassificationPipeline',
'pipeline_name': 'Random Forest Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model',
'parameters': {'n_estimators': 569,
'max_depth': 22,
'impute_strategy': 'most_frequent',
'percent_features': 0.8593661614465293},
'score': 0.973476521410252,
'high_variance_cv': False,
'training_time': 9.873236894607544,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9831932773109243),
('Precision', 0.9831932773109243),
('Recall', 0.9831932773109243),
('AUC', 0.9977512131613208),
('Log Loss', 0.08333209715129118),
('MCC', 0.9550242632264173),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.01408451, 0.01408451, 0.09859155, 0.09859155,
0.12676056, 0.12676056, 0.4084507 , 0.43661972, 0.47887324,
0.54929577, 0.5915493 , 0.6056338 , 0.64788732, 0.76056338,
1. ]),
array([0. , 0.26890756, 0.39495798, 0.42016807, 0.49579832,
0.52941176, 0.57142857, 0.59663866, 0.64705882, 0.65546218,
0.68907563, 0.69747899, 0.73109244, 0.8487395 , 0.89915966,
0.95798319, 0.95798319, 0.98319328, 0.98319328, 0.99159664,
0.99159664, 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
9.87697715e-01, 9.85940246e-01, 9.84182777e-01, 9.82425308e-01,
9.77152900e-01, 9.08611599e-01, 8.89279438e-01, 7.75043937e-01,
7.39894552e-01, 7.13532513e-01, 3.69068541e-01, 3.53251318e-01,
2.86467487e-01, 2.26713533e-01, 4.92091388e-02, 4.56942004e-02,
4.39367311e-02, 1.23022847e-02, 1.05448155e-02, 5.27240773e-03,
3.51493849e-03, 1.75746924e-03, 0.00000000e+00]))),
('Confusion Matrix', 0 1
0 69 2
1 2 117),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9831932773109243},
{'all_objective_scores': OrderedDict([('F1', 0.9789029535864979),
('Precision', 0.9830508474576272),
('Recall', 0.9747899159663865),
('AUC', 0.9923067818676766),
('Log Loss', 0.1143023991450681),
('MCC', 0.9439989100828842),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.02816901, 0.02816901, 0.04225352,
0.04225352, 0.11267606, 0.11267606, 0.22535211, 0.25352113,
0.30985915, 0.33802817, 0.3943662 , 0.42253521, 0.43661972,
0.49295775, 0.52112676, 0.6056338 , 0.73239437, 1. ]),
array([0. , 0.19327731, 0.27731092, 0.33613445, 0.3697479 ,
0.45378151, 0.47058824, 0.50420168, 0.52941176, 0.56302521,
0.57142857, 0.57142857, 0.59663866, 0.61344538, 0.62184874,
0.63865546, 0.64705882, 0.66386555, 0.68907563, 0.70588235,
0.73109244, 0.76470588, 0.81512605, 0.83193277, 0.84033613,
0.85714286, 0.94117647, 0.94117647, 0.98319328, 0.98319328,
0.99159664, 0.99159664, 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
9.94727592e-01, 9.91212654e-01, 9.89455185e-01, 9.87697715e-01,
9.85940246e-01, 9.80667838e-01, 9.78910369e-01, 9.77152900e-01,
9.75395431e-01, 9.73637961e-01, 9.71880492e-01, 9.70123023e-01,
9.68365554e-01, 9.63093146e-01, 9.52548330e-01, 9.50790861e-01,
9.36731107e-01, 9.29701230e-01, 8.82249561e-01, 8.73462214e-01,
8.71704745e-01, 8.55887522e-01, 6.67838313e-01, 6.55536028e-01,
4.95606327e-01, 4.81546573e-01, 4.69244288e-01, 3.98945518e-01,
3.72583480e-01, 1.15992970e-01, 1.00175747e-01, 6.50263620e-02,
4.39367311e-02, 2.81195079e-02, 1.75746924e-02, 1.40597540e-02,
8.78734622e-03, 7.02987698e-03, 3.51493849e-03, 1.75746924e-03,
0.00000000e+00]))),
('Confusion Matrix', 0 1
0 69 2
1 3 116),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9789029535864979},
{'all_objective_scores': OrderedDict([('F1', 0.9583333333333334),
('Precision', 0.9504132231404959),
('Recall', 0.9663865546218487),
('AUC', 0.9847539015606243),
('Log Loss', 0.1416407874804379),
('MCC', 0.8861141678760591),
('ROC',
(array([0. , 0. , 0.01428571, 0.01428571, 0.01428571,
0.01428571, 0.01428571, 0.01428571, 0.01428571, 0.01428571,
0.01428571, 0.02857143, 0.02857143, 0.02857143, 0.02857143,
0.04285714, 0.04285714, 0.08571429, 0.1 , 0.1 ,
0.14285714, 0.14285714, 0.37142857, 0.4 , 0.47142857,
0.5 , 0.51428571, 0.62857143, 1. ]),
array([0. , 0.37815126, 0.46218487, 0.54621849, 0.57983193,
0.62184874, 0.6302521 , 0.65546218, 0.66386555, 0.69747899,
0.78151261, 0.78991597, 0.85714286, 0.87394958, 0.88235294,
0.88235294, 0.96638655, 0.96638655, 0.97478992, 0.99159664,
0.99159664, 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
9.87697715e-01, 9.85940246e-01, 9.43760984e-01, 9.38488576e-01,
8.64674868e-01, 8.03163445e-01, 7.62741652e-01, 7.34622144e-01,
5.55360281e-01, 5.04393673e-01, 4.60456942e-01, 3.81370826e-01,
3.04042179e-01, 2.93497364e-01, 2.10896309e-02, 1.93321617e-02,
8.78734622e-03, 5.27240773e-03, 3.51493849e-03, 1.75746924e-03,
0.00000000e+00]))),
('Confusion Matrix', 0 1
0 64 6
1 4 115),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9583333333333334}]},
3: {'id': 3,
'pipeline_class_name': 'XGBoostPipeline',
'pipeline_name': 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model',
'parameters': {'eta': 0.5288949197529046,
'min_child_weight': 6.112401049845392,
'max_depth': 6,
'impute_strategy': 'most_frequent',
'percent_features': 0.34402219881309576},
'score': 0.9485662145040741,
'high_variance_cv': False,
'training_time': 2.4133780002593994,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9666666666666667),
('Precision', 0.9586776859504132),
('Recall', 0.9747899159663865),
('AUC', 0.9950289975144987),
('Log Loss', 0.09729690174817254),
('MCC', 0.9097672817424011),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.01408451, 0.01408451, 0.04225352, 0.04225352, 0.05633803,
0.05633803, 0.09859155, 0.09859155, 0.12676056, 0.12676056,
0.16901408, 0.16901408, 0.38028169, 0.4084507 , 0.47887324,
0.52112676, 0.54929577, 0.57746479, 0.6056338 , 0.66197183,
0.67605634, 0.98591549, 1. ]),
array([0. , 0.02521008, 0.03361345, 0.16806723, 0.17647059,
0.20168067, 0.21008403, 0.35294118, 0.36134454, 0.38655462,
0.42016807, 0.43697479, 0.4789916 , 0.49579832, 0.51260504,
0.54621849, 0.57142857, 0.57983193, 0.59663866, 0.91596639,
0.91596639, 0.94957983, 0.94957983, 0.96638655, 0.96638655,
0.97478992, 0.97478992, 0.98319328, 0.98319328, 0.99159664,
0.99159664, 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. , 1. ]),
array([1.9918091 , 0.99180907, 0.9914386 , 0.99143535, 0.9909027 ,
0.9905533 , 0.9904917 , 0.9904881 , 0.990333 , 0.99021775,
0.9898657 , 0.98977226, 0.9895096 , 0.9892888 , 0.98913723,
0.98872095, 0.9886431 , 0.9884277 , 0.9880271 , 0.9180971 ,
0.907636 , 0.7645348 , 0.63884944, 0.6283931 , 0.5994021 ,
0.5585935 , 0.38392243, 0.37918517, 0.2239313 , 0.22208475,
0.12249093, 0.12071476, 0.02558885, 0.0240444 , 0.01662812,
0.01431511, 0.01352188, 0.01269417, 0.01247706, 0.01176526,
0.01091322, 0.01024354, 0.0058776 ], dtype=float32))),
('Confusion Matrix', 0 1
0 66 5
1 3 116),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9666666666666667},
{'all_objective_scores': OrderedDict([('F1', 0.9338842975206612),
('Precision', 0.9186991869918699),
('Recall', 0.9495798319327731),
('AUC', 0.9846727423363711),
('Log Loss', 0.17591368435195795),
('MCC', 0.8188772553918354),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.02816901,
0.02816901, 0.04225352, 0.07042254, 0.07042254, 0.08450704,
0.08450704, 0.15492958, 0.15492958, 0.18309859, 0.18309859,
0.22535211, 0.22535211, 0.35211268, 0.38028169, 0.4084507 ,
0.46478873, 0.49295775, 0.50704225, 0.78873239, 0.8028169 ,
0.84507042, 1. ]),
array([0. , 0.10084034, 0.11764706, 0.14285714, 0.19327731,
0.22689076, 0.4789916 , 0.49579832, 0.53781513, 0.58823529,
0.60504202, 0.66386555, 0.68067227, 0.69747899, 0.73109244,
0.75630252, 0.78991597, 0.80672269, 0.87394958, 0.87394958,
0.91596639, 0.92436975, 0.92436975, 0.94117647, 0.94117647,
0.94957983, 0.94957983, 0.96638655, 0.96638655, 0.99159664,
0.99159664, 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. ]),
array([1.9947486 , 0.99474853, 0.99465054, 0.9945134 , 0.9920238 ,
0.99128073, 0.9897943 , 0.98960495, 0.98933965, 0.98638594,
0.98634803, 0.9774489 , 0.9764572 , 0.97513086, 0.9740399 ,
0.9718917 , 0.9563253 , 0.946435 , 0.8835335 , 0.878611 ,
0.7919501 , 0.755015 , 0.71543545, 0.70243114, 0.6865198 ,
0.64198273, 0.47787225, 0.22530945, 0.16627482, 0.08063855,
0.06376061, 0.04771832, 0.01834523, 0.01635974, 0.01409694,
0.01397619, 0.01379675, 0.01324805, 0.01214174, 0.00822058,
0.0067653 , 0.00625362], dtype=float32))),
('Confusion Matrix', 0 1
0 61 10
1 6 113),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9338842975206612},
{'all_objective_scores': OrderedDict([('F1', 0.9451476793248945),
('Precision', 0.9491525423728814),
('Recall', 0.9411764705882353),
('AUC', 0.9645258103241297),
('Log Loss', 0.18750503725032247),
('MCC', 0.8530080688400891),
('ROC',
(array([0. , 0. , 0. , 0.01428571, 0.02857143,
0.02857143, 0.02857143, 0.02857143, 0.02857143, 0.02857143,
0.02857143, 0.02857143, 0.02857143, 0.02857143, 0.02857143,
0.04285714, 0.04285714, 0.05714286, 0.05714286, 0.07142857,
0.07142857, 0.08571429, 0.08571429, 0.1 , 0.1 ,
0.12857143, 0.12857143, 0.17142857, 0.17142857, 0.18571429,
0.18571429, 0.41428571, 0.44285714, 0.47142857, 0.5 ,
0.64285714, 1. ]),
array([0. , 0.00840336, 0.01680672, 0.01680672, 0.46218487,
0.48739496, 0.5210084 , 0.54621849, 0.55462185, 0.58823529,
0.61344538, 0.6302521 , 0.63865546, 0.65546218, 0.77310924,
0.77310924, 0.8487395 , 0.8487395 , 0.87394958, 0.87394958,
0.93277311, 0.93277311, 0.94957983, 0.94957983, 0.96638655,
0.97478992, 0.98319328, 0.98319328, 0.99159664, 0.99159664,
1. , 1. , 1. , 1. , 1. ,
1. , 1. ]),
array([1.9947662 , 0.99476624, 0.99434704, 0.99431866, 0.993646 ,
0.99334115, 0.9933149 , 0.99291396, 0.99289966, 0.9928403 ,
0.9924971 , 0.9922282 , 0.99102247, 0.9907026 , 0.9769703 ,
0.9766011 , 0.9003137 , 0.89544696, 0.88858014, 0.8658668 ,
0.68705285, 0.6113713 , 0.43407622, 0.37409404, 0.32079345,
0.29611424, 0.29083598, 0.2146415 , 0.21115056, 0.1591847 ,
0.14415835, 0.01072225, 0.01065906, 0.00977037, 0.00951847,
0.00907114, 0.00867252], dtype=float32))),
('Confusion Matrix', 0 1
0 64 6
1 7 112),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9451476793248945}]},
4: {'id': 4,
'pipeline_class_name': 'LogisticRegressionPipeline',
'pipeline_name': 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler',
'parameters': {'penalty': 'l2',
'C': 8.444214828324364,
'impute_strategy': 'most_frequent'},
'score': 0.9719486068554629,
'high_variance_cv': False,
'training_time': 1.6137502193450928,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9709543568464729),
('Precision', 0.9590163934426229),
('Recall', 0.9831932773109243),
('AUC', 0.9875724937862469),
('Log Loss', 0.14613712409589413),
('MCC', 0.9211492315750531),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
0.05633803, 0.07042254, 0.07042254, 0.08450704, 0.08450704,
1. ]),
array([0. , 0.00840336, 0.57983193, 0.57983193, 0.68067227,
0.68067227, 0.92436975, 0.92436975, 0.95798319, 0.95798319,
0.98319328, 0.98319328, 0.99159664, 0.99159664, 1. ,
1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.99936259e-01, 9.99935430e-01,
9.99856221e-01, 9.99847656e-01, 9.44959587e-01, 9.25157910e-01,
8.68396485e-01, 8.05626231e-01, 6.85798432e-01, 5.24509038e-01,
4.79378624e-01, 2.63698337e-01, 2.31528899e-01, 1.13164746e-48]))),
('Confusion Matrix', 0 1
0 66 5
1 2 117),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9709543568464729},
{'all_objective_scores': OrderedDict([('F1', 0.9790794979079498),
('Precision', 0.975),
('Recall', 0.9831932773109243),
('AUC', 0.9910048526452835),
('Log Loss', 0.12072855977761998),
('MCC', 0.9436801731761278),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.05633803, 0.05633803, 0.23943662, 0.23943662, 1. ]),
array([0. , 0.00840336, 0.5210084 , 0.5210084 , 0.98319328,
0.98319328, 0.99159664, 0.99159664, 1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.99838725e-01, 9.99835686e-01,
6.74763310e-01, 4.29302726e-01, 3.81937028e-01, 5.59186779e-04,
2.40539384e-04, 1.23958997e-29]))),
('Confusion Matrix', 0 1
0 68 3
1 2 117),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9790794979079498},
{'all_objective_scores': OrderedDict([('F1', 0.9658119658119659),
('Precision', 0.9826086956521739),
('Recall', 0.9495798319327731),
('AUC', 0.9965186074429772),
('Log Loss', 0.08056331735168969),
('MCC', 0.9112159507396058),
('ROC',
(array([0. , 0. , 0. , 0.01428571, 0.01428571,
0.02857143, 0.02857143, 0.04285714, 0.04285714, 0.05714286,
0.05714286, 0.08571429, 0.08571429, 1. ]),
array([0. , 0.00840336, 0.90756303, 0.90756303, 0.93277311,
0.93277311, 0.94957983, 0.94957983, 0.98319328, 0.98319328,
0.99159664, 0.99159664, 1. , 1. ]),
array([2.00000000e+00, 9.99999999e-01, 9.46260690e-01, 9.45033115e-01,
9.06023542e-01, 8.77670109e-01, 7.39987181e-01, 4.77332145e-01,
3.62040644e-01, 2.35727064e-01, 1.93164591e-01, 9.53728712e-02,
8.79204445e-02, 1.15873760e-20]))),
('Confusion Matrix', 0 1
0 68 2
1 6 113),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9658119658119659}]}},
'search_order': [0, 1, 2, 3, 4]}