Source code for evalml.pipelines.time_series_regression_pipeline

"""Pipeline base class for time series regression problems."""
import pandas as pd
from woodwork.statistics_utils import infer_frequency

from evalml.pipelines.time_series_pipeline_base import TimeSeriesPipelineBase
from evalml.problem_types import ProblemTypes
from evalml.utils.woodwork_utils import infer_feature_types


[docs]class TimeSeriesRegressionPipeline(TimeSeriesPipelineBase): """Pipeline base class for time series regression problems. Args: component_graph (ComponentGraph, list, dict): ComponentGraph instance, list of components in order, or dictionary of components. Accepts strings or ComponentBase subclasses in the list. Note that when duplicate components are specified in a list, the duplicate component names will be modified with the component's index in the list. For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will have names ["Imputer", "One Hot Encoder", "Imputer_2", "Logistic Regression Classifier"] parameters (dict): Dictionary with component names as keys and dictionary of that component's parameters as values. An empty dictionary {} implies using all default values for component parameters. Pipeline-level parameters such as time_index, gap, and max_delay must be specified with the "pipeline" key. For example: Pipeline(parameters={"pipeline": {"time_index": "Date", "max_delay": 4, "gap": 2}}). random_seed (int): Seed for the random number generator. Defaults to 0. Example: >>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Simple Imputer", "Linear Regressor"], ... parameters={"Linear Regressor": {"normalize": True}, ... "pipeline": {"gap": 1, "max_delay": 1, "forecast_horizon": 1, "time_index": "date"}}, ... custom_name="My TimeSeriesRegression Pipeline") ... >>> assert pipeline.custom_name == "My TimeSeriesRegression Pipeline" >>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer', 'Linear Regressor'} The pipeline parameters will be chosen from the default parameters for every component, unless specific parameters were passed in as they were above. >>> assert pipeline.parameters == { ... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None}, ... 'Linear Regressor': {'fit_intercept': True, 'normalize': True, 'n_jobs': -1}, ... 'pipeline': {'gap': 1, 'max_delay': 1, 'forecast_horizon': 1, 'time_index': "date"}} """ problem_type = ProblemTypes.TIME_SERIES_REGRESSION """ProblemTypes.TIME_SERIES_REGRESSION"""
[docs] def fit(self, X, y): """Fit a time series pipeline. Args: X (pd.DataFrame or np.ndarray): The input training data of shape [n_samples, n_features]. y (pd.Series, np.ndarray): The target training targets of length [n_samples]. Returns: self Raises: ValueError: If the target is not numeric. """ X, y = self._convert_to_woodwork(X, y) self.frequency = infer_frequency(X[self.time_index]) if "numeric" not in y.ww.semantic_tags: raise ValueError( "Time Series Regression pipeline can only handle numeric target data!", ) X = self._drop_time_index(X) self._fit(X, y) return self
[docs] def score(self, X, y, objectives, X_train=None, y_train=None): """Evaluate model performance on current and additional objectives. Args: X (pd.DataFrame or np.ndarray): Data of shape [n_samples, n_features]. y (pd.Series): True labels of length [n_samples]. objectives (list): Non-empty list of objectives to score on. X_train (pd.DataFrame, np.ndarray): Data the pipeline was trained on of shape [n_samples_train, n_feautures]. y_train (pd.Series, np.ndarray): Targets used to train the pipeline of shape [n_samples_train]. Returns: dict: Ordered dictionary of objective scores. """ X, y = self._convert_to_woodwork(X, y) X_train, y_train = self._convert_to_woodwork(X_train, y_train) objectives = self.create_objectives(objectives) y_predicted = self.predict_in_sample(X, y, X_train, y_train) return self._score_all_objectives( X, y, y_predicted, y_pred_proba=None, objectives=objectives, )
[docs] def get_forecast_period(self, X): """Generates all possible forecasting time points based on latest data point in X. Args: X (pd.DataFrame, np.ndarray): Data the pipeline was trained on of shape [n_samples_train, n_feautures]. Raises: ValueError: If pipeline is not trained. Returns: pd.Series: Datetime periods out to `forecast_horizon + gap`. Example: >>> X = pd.DataFrame({'date': pd.date_range(start='1-1-2022', periods=10, freq='D'), 'feature': range(10, 20)}) >>> y = pd.Series(range(0, 10), name='target') >>> gap = 1 >>> forecast_horizon = 2 >>> pipeline = TimeSeriesRegressionPipeline(component_graph=["Linear Regressor"], ... parameters={"Linear Regressor": {"normalize": True}, ... "pipeline": {"gap": gap, "max_delay": 1, "forecast_horizon": forecast_horizon, "time_index": "date"}}, ... ) >>> pipeline.fit(X, y) pipeline = TimeSeriesRegressionPipeline(component_graph={'Linear Regressor': ['Linear Regressor', 'X', 'y']}, parameters={'Linear Regressor':{'fit_intercept': True, 'normalize': True, 'n_jobs': -1}, 'pipeline':{'gap': 1, 'max_delay': 1, 'forecast_horizon': 2, 'time_index': 'date'}}, random_seed=0) >>> dates = pipeline.get_forecast_period(X) >>> expected = pd.Series(pd.date_range(start='2022-01-11', periods=(gap + forecast_horizon), freq='D'), name='date', index=[10, 11, 12]) >>> assert dates.equals(expected) """ if not self._is_fitted: raise ValueError("Pipeline must be fitted before getting forecast.") X = infer_feature_types(X) # Generate prediction periods first_date = X.iloc[-1][self.time_index] predicted_date_range = pd.Series( pd.date_range( start=first_date, periods=self.forecast_horizon + self.gap + 1, # Add additional period to account for dropping first date row freq=self.frequency, ), ) # Generate numerical index first_idx = len(X) - 1 if not isinstance(X.index.dtype, int) else X.index[-1] num_idx = pd.Series(range(first_idx, first_idx + predicted_date_range.size)) predicted_date_range.index = num_idx predicted_date_range = predicted_date_range.drop(predicted_date_range.index[0]) predicted_date_range.name = self.time_index return predicted_date_range
[docs] def get_forecast_predictions(self, X, y): """Generates all possible forecasting predictions based on last period of X. Args: X (pd.DataFrame, np.ndarray): Data the pipeline was trained on of shape [n_samples_train, n_feautures]. y (pd.Series, np.ndarray): Targets used to train the pipeline of shape [n_samples_train]. Returns: Predictions out to `forecast_horizon + gap` periods. """ X, y = self._convert_to_woodwork(X, y) pred_dates = pd.DataFrame(self.get_forecast_period(X)) preds = self.predict(pred_dates, objective=None, X_train=X, y_train=y) return preds