Source code for evalml.pipelines.components.transformers.imputers.simple_imputer
"""Component that imputes missing data according to a specified imputation strategy."""
import pandas as pd
import woodwork
from sklearn.impute import SimpleImputer as SkImputer
from woodwork.logical_types import Double
from evalml.pipelines.components.transformers import Transformer
from evalml.pipelines.components.utils import (
drop_natural_language_columns,
set_boolean_columns_to_categorical,
)
from evalml.utils import infer_feature_types
from evalml.utils.gen_utils import is_categorical_actually_boolean
[docs]class SimpleImputer(Transformer):
"""Imputes missing data according to a specified imputation strategy. Natural language columns are ignored.
Args:
impute_strategy (string): Impute strategy to use. Valid values include "mean", "median", "most_frequent", "constant" for
numerical data, and "most_frequent", "constant" for object data types.
fill_value (string): When impute_strategy == "constant", fill_value is used to replace missing data.
Defaults to 0 when imputing numerical data and "missing_value" for strings or object data types.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
name = "Simple Imputer"
hyperparameter_ranges = {"impute_strategy": ["mean", "median", "most_frequent"]}
"""{
"impute_strategy": ["mean", "median", "most_frequent"]
}"""
def __init__(
self, impute_strategy="most_frequent", fill_value=None, random_seed=0, **kwargs
):
parameters = {"impute_strategy": impute_strategy, "fill_value": fill_value}
parameters.update(kwargs)
self.impute_strategy = impute_strategy
imputer = SkImputer(
strategy=impute_strategy,
fill_value=fill_value,
missing_values=pd.NA,
**kwargs,
)
self._all_null_cols = None
super().__init__(
parameters=parameters,
component_obj=imputer,
random_seed=random_seed,
)
[docs] def fit(self, X, y=None):
"""Fits imputer to data. 'None' values are converted to np.nan before imputation and are treated as the same.
Args:
X (pd.DataFrame or np.ndarray): the input training data of shape [n_samples, n_features]
y (pd.Series, optional): the target training data of length [n_samples]
Returns:
self
Raises:
ValueError: if the SimpleImputer receives a dataframe with both Boolean and Categorical data.
"""
X = infer_feature_types(X)
if set([lt.type_string for lt in X.ww.logical_types.values()]) == {
"boolean",
"categorical",
} and not all(
[
is_categorical_actually_boolean(X, col)
for col in X.ww.select("Categorical")
],
):
raise ValueError(
"SimpleImputer cannot handle dataframes with both boolean and categorical features. Use Imputer instead.",
)
nan_ratio = X.isna().sum() / X.shape[0]
self._all_null_cols = nan_ratio[nan_ratio == 1].index.tolist()
X, _ = drop_natural_language_columns(X)
X = set_boolean_columns_to_categorical(X)
# If the Dataframe only had natural language columns, do nothing.
if X.shape[1] == 0:
return self
self._component_obj.fit(X, y)
return self
[docs] def transform(self, X, y=None):
"""Transforms input by imputing missing values. 'None' and np.nan values are treated as the same.
Args:
X (pd.DataFrame): Data to transform.
y (pd.Series, optional): Ignored.
Returns:
pd.DataFrame: Transformed X
"""
X = infer_feature_types(X)
original_schema = X.ww.schema
# Return early since bool dtype doesn't support nans and sklearn errors if all cols are bool
if (X.dtypes == bool).all():
return X
not_all_null_cols = [col for col in X.columns if col not in self._all_null_cols]
original_index = X.index
# Drop natural language columns and transform the other columns
X_t, natural_language_cols = drop_natural_language_columns(X)
if X_t.shape[1] == 0:
return X
not_all_null_or_natural_language_cols = [
col for col in not_all_null_cols if col not in natural_language_cols
]
X_t = self._component_obj.transform(X_t)
X_t = pd.DataFrame(X_t, columns=not_all_null_or_natural_language_cols)
new_schema = original_schema.get_subset_schema(X_t.columns)
# TODO: Fix this after WW adds inference of object type booleans to BooleanNullable
# Iterate through categorical columns that might have been boolean and convert them back to boolean
for col in X.ww.select(["Categorical"], return_schema=True).columns:
if is_categorical_actually_boolean(X, col):
X_t[col] = X_t[col].astype(bool)
# Convert Nullable Integers to Doubles for the "mean" and "median" strategies
if self.impute_strategy in ["mean", "median"]:
nullable_int_cols = X.ww.select(["IntegerNullable"], return_schema=True)
nullable_int_cols = [x for x in nullable_int_cols.columns.keys()]
for col in nullable_int_cols:
new_schema.set_types({col: Double})
X_t.ww.init(schema=new_schema)
# Add back in natural language columns, unchanged
if len(natural_language_cols) > 0:
X_t = woodwork.concat_columns([X_t, X[natural_language_cols]])
if not_all_null_or_natural_language_cols:
X_t.index = original_index
return X_t
[docs] def fit_transform(self, X, y=None):
"""Fits on X and transforms X.
Args:
X (pd.DataFrame): Data to fit and transform
y (pd.Series, optional): Target data.
Returns:
pd.DataFrame: Transformed X
"""
return self.fit(X, y).transform(X, y)