Source code for evalml.pipelines.regression_pipeline
"""Pipeline subclass for all regression pipelines."""
from evalml.pipelines import PipelineBase
from evalml.problem_types import ProblemTypes
from evalml.utils import infer_feature_types
[docs]class RegressionPipeline(PipelineBase):
"""Pipeline subclass for all regression pipelines.
Args:
component_graph (ComponentGraph, list, dict): ComponentGraph instance, list of components in order, or dictionary of components.
Accepts strings or ComponentBase subclasses in the list.
Note that when duplicate components are specified in a list, the duplicate component names will be modified with the
component's index in the list. For example, the component graph
[Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will have names
["Imputer", "One Hot Encoder", "Imputer_2", "Logistic Regression Classifier"]
parameters (dict): Dictionary with component names as keys and dictionary of that component's parameters as values.
An empty dictionary or None implies using all default values for component parameters. Defaults to None.
custom_name (str): Custom name for the pipeline. Defaults to None.
random_seed (int): Seed for the random number generator. Defaults to 0.
Example:
>>> pipeline = RegressionPipeline(component_graph=["Simple Imputer", "Linear Regressor"],
... parameters={"Linear Regressor": {"normalize": True}},
... custom_name="My Regression Pipeline")
...
>>> assert pipeline.custom_name == "My Regression Pipeline"
>>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer', 'Linear Regressor'}
The pipeline parameters will be chosen from the default parameters for every component, unless specific parameters
were passed in as they were above.
>>> assert pipeline.parameters == {
... 'Simple Imputer': {'impute_strategy': 'most_frequent', 'fill_value': None},
... 'Linear Regressor': {'fit_intercept': True, 'normalize': True, 'n_jobs': -1}}
"""
problem_type = ProblemTypes.REGRESSION
"""ProblemTypes.REGRESSION"""
[docs] def fit(self, X, y):
"""Build a regression model.
Args:
X (pd.DataFrame or np.ndarray): The input training data of shape [n_samples, n_features]
y (pd.Series, np.ndarray): The target training data of length [n_samples]
Returns:
self
Raises:
ValueError: If the target is not numeric.
"""
X = infer_feature_types(X)
y = infer_feature_types(y)
if "numeric" not in y.ww.semantic_tags:
raise ValueError(f"Regression pipeline can only handle numeric target data")
self._fit(X, y)
return self
[docs] def score(self, X, y, objectives, X_train=None, y_train=None):
"""Evaluate model performance on current and additional objectives.
Args:
X (pd.DataFrame, or np.ndarray): Data of shape [n_samples, n_features]
y (pd.Series, or np.ndarray): True values of length [n_samples]
objectives (list): Non-empty list of objectives to score on
X_train (pd.DataFrame or np.ndarray or None): Training data. Ignored. Only used for time series.
y_train (pd.Series or None): Training labels. Ignored. Only used for time series.
Returns:
dict: Ordered dictionary of objective scores.
"""
objectives = self.create_objectives(objectives)
y_predicted = self.predict(X)
return self._score_all_objectives(
X,
y,
y_predicted,
y_pred_proba=None,
objectives=objectives,
)
[docs] def predict(self, X, objective=None, X_train=None, y_train=None):
"""Make predictions using selected features.
Args:
X (pd.DataFrame, or np.ndarray): Data of shape [n_samples, n_features].
objective (Object or string): The objective to use to make predictions.
X_train (pd.DataFrame or np.ndarray or None): Training data. Ignored. Only used for time series.
y_train (pd.Series or None): Training labels. Ignored. Only used for time series.
Returns:
pd.Series: Predicted values.
"""
X = infer_feature_types(X)
predictions = self.component_graph.predict(X)
predictions = self.inverse_transform(predictions)
predictions.name = self.input_target_name
return infer_feature_types(predictions)