baseline_classifier#

Baseline classifier.

Module Contents#

Classes Summary#

BaselineClassifier

Classifier that predicts using the specified strategy.

Contents#

class evalml.pipelines.components.estimators.classifiers.baseline_classifier.BaselineClassifier(strategy='mode', random_seed=0, **kwargs)[source]#

Classifier that predicts using the specified strategy.

This is useful as a simple baseline classifier to compare with other classifiers.

Parameters
  • strategy (str) – Method used to predict. Valid options are “mode”, “random” and “random_weighted”. Defaults to “mode”.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Baseline Classifier

supported_problem_types

[ProblemTypes.BINARY, ProblemTypes.MULTICLASS]

training_only

False

Methods

classes_

Returns class labels. Will return None before fitting.

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature. Since baseline classifiers do not use input features to calculate predictions, returns an array of zeroes.

fit

Fits baseline classifier component to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using the baseline classification strategy.

predict_proba

Make prediction probabilities using the baseline classification strategy.

save

Saves component at file path.

property classes_(self)#

Returns class labels. Will return None before fitting.

Returns

Class names

Return type

list[str] or list(float)

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature. Since baseline classifiers do not use input features to calculate predictions, returns an array of zeroes.

Returns

An array of zeroes

Return type

pd.Series

fit(self, X, y=None)[source]#

Fits baseline classifier component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

Raises

ValueError – If y is None.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)[source]#

Make predictions using the baseline classification strategy.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X)[source]#

Make prediction probabilities using the baseline classification strategy.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted probability values.

Return type

pd.DataFrame

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.