regressors#

Regression model components.

Package Contents#

Classes Summary#

ARIMARegressor

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html.

BaselineRegressor

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors.

CatBoostRegressor

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.

DecisionTreeRegressor

Decision Tree Regressor.

ElasticNetRegressor

Elastic Net Regressor.

ExponentialSmoothingRegressor

Holt-Winters Exponential Smoothing Forecaster.

ExtraTreesRegressor

Extra Trees Regressor.

LightGBMRegressor

LightGBM Regressor.

LinearRegressor

Linear Regressor.

ProphetRegressor

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

RandomForestRegressor

Random Forest Regressor.

SVMRegressor

Support Vector Machine Regressor.

TimeSeriesBaselineEstimator

Time series estimator that predicts using the naive forecasting approach.

VowpalWabbitRegressor

Vowpal Wabbit Regressor.

XGBoostRegressor

XGBoost Regressor.

Contents#

class evalml.pipelines.components.estimators.regressors.ARIMARegressor(time_index=None, trend=None, start_p=2, d=0, start_q=2, max_p=5, max_d=2, max_q=5, seasonal=True, sp=1, n_jobs=- 1, random_seed=0, maxiter=10, use_covariates=True, **kwargs)[source]#

Autoregressive Integrated Moving Average Model. The three parameters (p, d, q) are the AR order, the degree of differencing, and the MA order. More information here: https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima.model.ARIMA.html.

Currently ARIMARegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
  • time_index (str) – Specifies the name of the column in X that provides the datetime objects. Defaults to None.

  • trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when defining a polynomial, such as [1, 1, 0, 1].

  • start_p (int) – Minimum Autoregressive order. Defaults to 2.

  • d (int) – Minimum Differencing degree. Defaults to 0.

  • start_q (int) – Minimum Moving Average order. Defaults to 2.

  • max_p (int) – Maximum Autoregressive order. Defaults to 5.

  • max_d (int) – Maximum Differencing degree. Defaults to 2.

  • max_q (int) – Maximum Moving Average order. Defaults to 5.

  • seasonal (boolean) – Whether to fit a seasonal model to ARIMA. Defaults to True.

  • sp (int or str) – Period for seasonal differencing, specifically the number of periods in each season. If “detect”, this model will automatically detect this parameter (given the time series is a standard frequency) and will fall back to 1 (no seasonality) if it cannot be detected. Defaults to 1.

  • n_jobs (int or None) – Non-negative integer describing level of parallelism used for pipelines. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “start_p”: Integer(1, 3), “d”: Integer(0, 2), “start_q”: Integer(1, 3), “max_p”: Integer(3, 10), “max_d”: Integer(2, 5), “max_q”: Integer(3, 10), “seasonal”: [True, False],}

model_family

ModelFamily.ARIMA

modifies_features

True

modifies_target

False

name

ARIMA Regressor

supported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns array of 0's with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit

Fits ARIMA regressor to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using fitted ARIMA regressor.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns array of 0’s with a length of 1 as feature_importance is not defined for ARIMA regressor.

fit(self, X, y=None)[source]#

Fits ARIMA regressor to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

Raises

ValueError – If y was not passed in.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X, y=None)[source]#

Make predictions using fitted ARIMA regressor.

Parameters
  • X (pd.DataFrame) – Data of shape [n_samples, n_features].

  • y (pd.Series) – Target data.

Returns

Predicted values.

Return type

pd.Series

Raises

ValueError – If X was passed to fit but not passed in predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.BaselineRegressor(strategy='mean', random_seed=0, **kwargs)[source]#

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors.

Parameters
  • strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults to “mean”.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Baseline Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes.

fit

Fits baseline regression component to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using the baseline regression strategy.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes.

Returns

An array of zeroes.

Return type

np.ndarray (float)

fit(self, X, y=None)[source]#

Fits baseline regression component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

Raises

ValueError – If input y is None.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)[source]#

Make predictions using the baseline regression strategy.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.CatBoostRegressor(n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=False, allow_writing_files=False, random_seed=0, n_jobs=- 1, **kwargs)[source]#

CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.

For more information, check out https://catboost.ai/

Parameters
  • n_estimators (float) – The maximum number of trees to build. Defaults to 10.

  • eta (float) – The learning rate. Defaults to 0.03.

  • max_depth (int) – The maximum tree depth for base learners. Defaults to 6.

  • bootstrap_type (string) – Defines the method for sampling the weights of objects. Available methods are ‘Bayesian’, ‘Bernoulli’, ‘MVS’. Defaults to None.

  • silent (boolean) – Whether to use the “silent” logging mode. Defaults to True.

  • allow_writing_files (boolean) – Whether to allow writing snapshot files while training. Defaults to False.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(4, 100), “eta”: Real(0.000001, 1), “max_depth”: Integer(4, 10),}

model_family

ModelFamily.CATBOOST

modifies_features

True

modifies_target

False

name

CatBoost Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance of fitted CatBoost regressor.

fit

Fits CatBoost regressor component to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Feature importance of fitted CatBoost regressor.

fit(self, X, y=None)[source]#

Fits CatBoost regressor component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.DecisionTreeRegressor(criterion='mse', max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_seed=0, **kwargs)[source]#

Decision Tree Regressor.

Parameters
  • criterion ({"mse", "friedman_mse", "mae", "poisson"}) –

    The function to measure the quality of a split. Supported criteria are:

    • ”mse” for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node

    • ”friedman_mse”, which uses mean squared error with Friedman”s improvement score for potential splits

    • ”mae” for the mean absolute error, which minimizes the L1 loss using the median of each terminal node,

    • ”poisson” which uses reduction in Poisson deviance to find splits.

  • max_features (int, float or {"auto", "sqrt", "log2"}) –

    The number of features to consider when looking for the best split:

    • If int, then consider max_features features at each split.

    • If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.

    • If “auto”, then max_features=sqrt(n_features).

    • If “sqrt”, then max_features=sqrt(n_features).

    • If “log2”, then max_features=log2(n_features).

    • If None, then max_features = n_features.

    The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features.

  • max_depth (int) – The maximum depth of the tree. Defaults to 6.

  • min_samples_split (int or float) –

    The minimum number of samples required to split an internal node:

    • If int, then consider min_samples_split as the minimum number.

    • If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

    Defaults to 2.

  • min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “criterion”: [“mse”, “friedman_mse”, “mae”], “max_features”: [“auto”, “sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family

ModelFamily.DECISION_TREE

modifies_features

True

modifies_target

False

name

Decision Tree Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature.

Returns

Importance associated with each feature.

Return type

np.ndarray

Raises

MethodPropertyNotFoundError – If estimator does not have a feature_importance method or a component_obj that implements feature_importance.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.ElasticNetRegressor(alpha=0.0001, l1_ratio=0.15, max_iter=1000, normalize=False, random_seed=0, **kwargs)[source]#

Elastic Net Regressor.

Parameters
  • alpha (float) – Constant that multiplies the penalty terms. Defaults to 0.0001.

  • l1_ratio (float) – The mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty=’elasticnet’. Setting l1_ratio=0 is equivalent to using penalty=’l2’, while setting l1_ratio=1 is equivalent to using penalty=’l1’. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. Defaults to 0.15.

  • max_iter (int) – The maximum number of iterations. Defaults to 1000.

  • normalize (boolean) – If True, the regressors will be normalized before regression by subtracting the mean and dividing by the l2-norm. Defaults to False.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “alpha”: Real(0, 1), “l1_ratio”: Real(0, 1),}

model_family

ModelFamily.LINEAR_MODEL

modifies_features

True

modifies_target

False

name

Elastic Net Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance for fitted ElasticNet regressor.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Feature importance for fitted ElasticNet regressor.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.ExponentialSmoothingRegressor(trend=None, damped_trend=False, seasonal=None, sp=2, n_jobs=- 1, random_seed=0, **kwargs)[source]#

Holt-Winters Exponential Smoothing Forecaster.

Currently ExponentialSmoothingRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.

Parameters
  • trend (str) – Type of trend component. Defaults to None.

  • damped_trend (bool) – If the trend component should be damped. Defaults to False.

  • seasonal (str) – Type of seasonal component. Takes one of {“additive”, None}. Can also be multiplicative if

  • 0 (none of the target data is) –

  • None. (but AutoMLSearch wiill not tune for this. Defaults to) –

  • sp (int) – The number of seasonal periods to consider. Defaults to 2.

  • n_jobs (int or None) – Non-negative integer describing level of parallelism used for pipelines. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “trend”: [None, “additive”], “damped_trend”: [True, False], “seasonal”: [None, “additive”], “sp”: Integer(2, 8),}

model_family

ModelFamily.EXPONENTIAL_SMOOTHING

modifies_features

True

modifies_target

False

name

Exponential Smoothing Regressor

supported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns array of 0's with a length of 1 as feature_importance is not defined for Exponential Smoothing regressor.

fit

Fits Exponential Smoothing Regressor to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using fitted Exponential Smoothing regressor.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns array of 0’s with a length of 1 as feature_importance is not defined for Exponential Smoothing regressor.

fit(self, X, y=None)[source]#

Fits Exponential Smoothing Regressor to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features]. Ignored.

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

Raises

ValueError – If y was not passed in.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X, y=None)[source]#

Make predictions using fitted Exponential Smoothing regressor.

Parameters
  • X (pd.DataFrame) – Data of shape [n_samples, n_features]. Ignored except to set forecast horizon.

  • y (pd.Series) – Target data.

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.ExtraTreesRegressor(n_estimators=100, max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=- 1, random_seed=0, **kwargs)[source]#

Extra Trees Regressor.

Parameters
  • n_estimators (float) – The number of trees in the forest. Defaults to 100.

  • max_features (int, float or {"auto", "sqrt", "log2"}) –

    The number of features to consider when looking for the best split:

    • If int, then consider max_features features at each split.

    • If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.

    • If “auto”, then max_features=sqrt(n_features).

    • If “sqrt”, then max_features=sqrt(n_features).

    • If “log2”, then max_features=log2(n_features).

    • If None, then max_features = n_features.

    The search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than max_features features. Defaults to “auto”.

  • max_depth (int) – The maximum depth of the tree. Defaults to 6.

  • min_samples_split (int or float) –

    The minimum number of samples required to split an internal node:

    • If int, then consider min_samples_split as the minimum number.

    • If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.

  • 2. (Defaults to) –

  • min_weight_fraction_leaf (float) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Defaults to 0.0.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(10, 1000), “max_features”: [“auto”, “sqrt”, “log2”], “max_depth”: Integer(4, 10),}

model_family

ModelFamily.EXTRA_TREES

modifies_features

True

modifies_target

False

name

Extra Trees Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature.

Returns

Importance associated with each feature.

Return type

np.ndarray

Raises

MethodPropertyNotFoundError – If estimator does not have a feature_importance method or a component_obj that implements feature_importance.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.LightGBMRegressor(boosting_type='gbdt', learning_rate=0.1, n_estimators=20, max_depth=0, num_leaves=31, min_child_samples=20, bagging_fraction=0.9, bagging_freq=0, n_jobs=- 1, random_seed=0, **kwargs)[source]#

LightGBM Regressor.

Parameters
  • boosting_type (string) – Type of boosting to use. Defaults to “gbdt”. - ‘gbdt’ uses traditional Gradient Boosting Decision Tree - “dart”, uses Dropouts meet Multiple Additive Regression Trees - “goss”, uses Gradient-based One-Side Sampling - “rf”, uses Random Forest

  • learning_rate (float) – Boosting learning rate. Defaults to 0.1.

  • n_estimators (int) – Number of boosted trees to fit. Defaults to 100.

  • max_depth (int) – Maximum tree depth for base learners, <=0 means no limit. Defaults to 0.

  • num_leaves (int) – Maximum tree leaves for base learners. Defaults to 31.

  • min_child_samples (int) – Minimum number of data needed in a child (leaf). Defaults to 20.

  • bagging_fraction (float) – LightGBM will randomly select a subset of features on each iteration (tree) without resampling if this is smaller than 1.0. For example, if set to 0.8, LightGBM will select 80% of features before training each tree. This can be used to speed up training and deal with overfitting. Defaults to 0.9.

  • bagging_freq (int) – Frequency for bagging. 0 means bagging is disabled. k means perform bagging at every k iteration. Every k-th iteration, LightGBM will randomly select bagging_fraction * 100 % of the data to use for the next k iterations. Defaults to 0.

  • n_jobs (int or None) – Number of threads to run in parallel. -1 uses all threads. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “learning_rate”: Real(0.000001, 1), “boosting_type”: [“gbdt”, “dart”, “goss”, “rf”], “n_estimators”: Integer(10, 100), “max_depth”: Integer(0, 10), “num_leaves”: Integer(2, 100), “min_child_samples”: Integer(1, 100), “bagging_fraction”: Real(0.000001, 1), “bagging_freq”: Integer(0, 1),}

model_family

ModelFamily.LIGHTGBM

modifies_features

True

modifies_target

False

name

LightGBM Regressor

SEED_MAX

SEED_BOUNDS.max_bound

SEED_MIN

0

supported_problem_types

[ProblemTypes.REGRESSION]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature.

fit

Fits LightGBM regressor to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using fitted LightGBM regressor.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature.

Returns

Importance associated with each feature.

Return type

np.ndarray

Raises

MethodPropertyNotFoundError – If estimator does not have a feature_importance method or a component_obj that implements feature_importance.

fit(self, X, y=None)[source]#

Fits LightGBM regressor to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)[source]#

Make predictions using fitted LightGBM regressor.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.LinearRegressor(fit_intercept=True, normalize=False, n_jobs=- 1, random_seed=0, **kwargs)[source]#

Linear Regressor.

Parameters
  • fit_intercept (boolean) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). Defaults to True.

  • normalize (boolean) – If True, the regressors will be normalized before regression by subtracting the mean and dividing by the l2-norm. This parameter is ignored when fit_intercept is set to False. Defaults to False.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all threads. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “fit_intercept”: [True, False], “normalize”: [True, False]}

model_family

ModelFamily.LINEAR_MODEL

modifies_features

True

modifies_target

False

name

Linear Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance for fitted linear regressor.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Feature importance for fitted linear regressor.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.ProphetRegressor(time_index=None, changepoint_prior_scale=0.05, seasonality_prior_scale=10, holidays_prior_scale=10, seasonality_mode='additive', random_seed=0, stan_backend='CMDSTANPY', **kwargs)[source]#

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

More information here: https://facebook.github.io/prophet/

Attributes

hyperparameter_ranges

{ “changepoint_prior_scale”: Real(0.001, 0.5), “seasonality_prior_scale”: Real(0.01, 10), “holidays_prior_scale”: Real(0.01, 10), “seasonality_mode”: [“additive”, “multiplicative”],}

model_family

ModelFamily.PROPHET

modifies_features

True

modifies_target

False

name

Prophet Regressor

supported_problem_types

[ProblemTypes.TIME_SERIES_REGRESSION]

training_only

False

Methods

build_prophet_df

Build the Prophet data to pass fit and predict on.

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns array of 0's with len(1) as feature_importance is not defined for Prophet regressor.

fit

Fits Prophet regressor component to data.

get_params

Get parameters for the Prophet regressor.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using fitted Prophet regressor.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

static build_prophet_df(X, y=None, time_index='ds')[source]#

Build the Prophet data to pass fit and predict on.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns array of 0’s with len(1) as feature_importance is not defined for Prophet regressor.

fit(self, X, y=None)[source]#

Fits Prophet regressor component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

get_params(self)[source]#

Get parameters for the Prophet regressor.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X, y=None)[source]#

Make predictions using fitted Prophet regressor.

Parameters
  • X (pd.DataFrame) – Data of shape [n_samples, n_features].

  • y (pd.Series) – Target data. Ignored.

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.RandomForestRegressor(n_estimators=100, max_depth=6, n_jobs=- 1, random_seed=0, **kwargs)[source]#

Random Forest Regressor.

Parameters
  • n_estimators (float) – The number of trees in the forest. Defaults to 100.

  • max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

  • n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}

model_family

ModelFamily.RANDOM_FOREST

modifies_features

True

modifies_target

False

name

Random Forest Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature.

Returns

Importance associated with each feature.

Return type

np.ndarray

Raises

MethodPropertyNotFoundError – If estimator does not have a feature_importance method or a component_obj that implements feature_importance.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.SVMRegressor(C=1.0, kernel='rbf', gamma='auto', random_seed=0, **kwargs)[source]#

Support Vector Machine Regressor.

Parameters
  • C (float) – The regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty. Defaults to 1.0.

  • kernel ({"poly", "rbf", "sigmoid"}) – Specifies the kernel type to be used in the algorithm. Defaults to “rbf”.

  • gamma ({"scale", "auto"} or float) – Kernel coefficient for “rbf”, “poly” and “sigmoid”. Defaults to “auto”. - If gamma=’scale’ is passed then it uses 1 / (n_features * X.var()) as value of gamma - If “auto” (default), uses 1 / n_features

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “C”: Real(0, 10), “kernel”: [“poly”, “rbf”, “sigmoid”], “gamma”: [“scale”, “auto”],}

model_family

ModelFamily.SVM

modifies_features

True

modifies_target

False

name

SVM Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance of fitted SVM regresor.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Feature importance of fitted SVM regresor.

Only works with linear kernels. If the kernel isn’t linear, we return a numpy array of zeros.

Returns

The feature importance of the fitted SVM regressor, or an array of zeroes if the kernel is not linear.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.TimeSeriesBaselineEstimator(gap=1, forecast_horizon=1, random_seed=0, **kwargs)[source]#

Time series estimator that predicts using the naive forecasting approach.

This is useful as a simple baseline estimator for time series problems.

Parameters
  • gap (int) – Gap between prediction date and target date and must be a positive integer. If gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1.

  • forecast_horizon (int) – Number of time steps the model is expected to predict.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Time Series Baseline Estimator

supported_problem_types

[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature.

fit

Fits time series baseline estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using fitted time series baseline estimator.

predict_proba

Make prediction probabilities using fitted time series baseline estimator.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature.

Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes.

Returns

An array of zeroes.

Return type

np.ndarray (float)

fit(self, X, y=None)[source]#

Fits time series baseline estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

Raises

ValueError – If input y is None.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)[source]#

Make predictions using fitted time series baseline estimator.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

ValueError – If input y is None.

predict_proba(self, X)[source]#

Make prediction probabilities using fitted time series baseline estimator.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted probability values.

Return type

pd.DataFrame

Raises

ValueError – If input y is None.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.VowpalWabbitRegressor(learning_rate=0.5, decay_learning_rate=1.0, power_t=0.5, passes=1, random_seed=0, **kwargs)[source]#

Vowpal Wabbit Regressor.

Parameters
  • learning_rate (float) – Boosting learning rate. Defaults to 0.5.

  • decay_learning_rate (float) – Decay factor for learning_rate. Defaults to 1.0.

  • power_t (float) – Power on learning rate decay. Defaults to 0.5.

  • passes (int) – Number of training passes. Defaults to 1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

None

model_family

ModelFamily.VOWPAL_WABBIT

modifies_features

True

modifies_target

False

name

Vowpal Wabbit Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance for Vowpal Wabbit regressor.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Feature importance for Vowpal Wabbit regressor.

fit(self, X, y=None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

class evalml.pipelines.components.estimators.regressors.XGBoostRegressor(eta=0.1, max_depth=6, min_child_weight=1, n_estimators=100, random_seed=0, n_jobs=12, **kwargs)[source]#

XGBoost Regressor.

Parameters
  • eta (float) – Boosting learning rate. Defaults to 0.1.

  • max_depth (int) – Maximum tree depth for base learners. Defaults to 6.

  • min_child_weight (float) – Minimum sum of instance weight (hessian) needed in a child. Defaults to 1.0

  • n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting rounds. Defaults to 100.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

  • n_jobs (int) – Number of parallel threads used to run xgboost. Note that creating thread contention will significantly slow down the algorithm. Defaults to 12.

Attributes

hyperparameter_ranges

{ “eta”: Real(0.000001, 1), “max_depth”: Integer(1, 20), “min_child_weight”: Real(1, 10), “n_estimators”: Integer(1, 1000),}

model_family

ModelFamily.XGBOOST

modifies_features

True

modifies_target

False

name

XGBoost Regressor

SEED_MAX

None

SEED_MIN

None

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Feature importance of fitted XGBoost regressor.

fit

Fits XGBoost regressor component to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using fitted XGBoost regressor.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Feature importance of fitted XGBoost regressor.

fit(self, X, y=None)[source]#

Fits XGBoost regressor component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)[source]#

Make predictions using fitted XGBoost regressor.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X)#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.