knn_imputer#
Component that imputes missing data according to a specified imputation strategy.
Module Contents#
Classes Summary#
Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are ignored. |
Contents#
- class evalml.pipelines.components.transformers.imputers.knn_imputer.KNNImputer(number_neighbors=3, random_seed=0, **kwargs)[source]#
Imputes missing data using KNN according to a specified number of neighbors. Natural language columns are ignored.
- Parameters
number_neighbors (int) – Number of nearest neighbors for KNN to search for. Defaults to 3.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
modifies_features
True
modifies_target
False
name
KNN Imputer
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits imputer to data. 'None' values are converted to np.nan before imputation and are treated as the same.
Fits on X and transforms X.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input by imputing missing values. 'None' and np.nan values are treated as the same.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)[source]#
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are treated as the same.
- Parameters
X (pd.DataFrame or np.ndarray) – the input training data of shape [n_samples, n_features]
y (pd.Series, optional) – the target training data of length [n_samples]
- Returns
self
- Raises
ValueError – if the KNNImputer receives a dataframe with both Boolean and Categorical data.
- fit_transform(self, X, y=None)[source]#
Fits on X and transforms X.
- Parameters
X (pd.DataFrame) – Data to fit and transform
y (pd.Series, optional) – Target data.
- Returns
Transformed X
- Return type
pd.DataFrame
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.