target_imputer#

Component that imputes missing target data according to a specified imputation strategy.

Module Contents#

Classes Summary#

TargetImputer

Imputes missing target data according to a specified imputation strategy.

TargetImputerMeta

A version of the ComponentBaseMeta class which handles when input features is None.

Contents#

class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputer(impute_strategy='most_frequent', fill_value=None, random_seed=0, **kwargs)[source]#

Imputes missing target data according to a specified imputation strategy.

Parameters
  • impute_strategy (string) – Impute strategy to use. Valid values include “mean”, “median”, “most_frequent”, “constant” for numerical data, and “most_frequent”, “constant” for object data types. Defaults to “most_frequent”.

  • fill_value (string) – When impute_strategy == “constant”, fill_value is used to replace missing data. Defaults to None which uses 0 when imputing numerical data and “missing_value” for strings or object data types.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “impute_strategy”: [“mean”, “median”, “most_frequent”]}

modifies_features

False

modifies_target

True

name

Target Imputer

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fits imputer to target data. 'None' values are converted to np.nan before imputation and are treated as the same.

fit_transform

Fits on and transforms the input target data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

transform

Transforms input target data by imputing missing values. 'None' and np.nan values are treated as the same.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y)[source]#

Fits imputer to target data. ‘None’ values are converted to np.nan before imputation and are treated as the same.

Parameters
  • X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]. Ignored.

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

Raises

TypeError – If target is filled with all null values.

fit_transform(self, X, y)[source]#

Fits on and transforms the input target data.

Parameters
  • X (pd.DataFrame) – Features. Ignored.

  • y (pd.Series) – Target data to impute.

Returns

The original X, transformed y

Return type

(pd.DataFrame, pd.Series)

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

transform(self, X, y)[source]#

Transforms input target data by imputing missing values. ‘None’ and np.nan values are treated as the same.

Parameters
  • X (pd.DataFrame) – Features. Ignored.

  • y (pd.Series) – Target data to impute.

Returns

The original X, transformed y

Return type

(pd.DataFrame, pd.Series)

class evalml.pipelines.components.transformers.imputers.target_imputer.TargetImputerMeta[source]#

A version of the ComponentBaseMeta class which handles when input features is None.

Attributes

FIT_METHODS

[‘fit’, ‘fit_transform’]

METHODS_TO_CHECK

[‘predict’, ‘predict_proba’, ‘transform’, ‘inverse_transform’, ‘get_trend_dataframe’]

PROPERTIES_TO_CHECK

[‘feature_importance’]

Methods

check_for_fit

check_for_fit wraps a method that validates if self._is_fitted is True.

register

Register a virtual subclass of an ABC.

set_fit

Wrapper for the fit method.

classmethod check_for_fit(cls, method)[source]#

check_for_fit wraps a method that validates if self._is_fitted is True.

Parameters

method (callable) – Method to wrap.

Raises

ComponentNotYetFittedError – If component is not fitted.

Returns

The wrapped input method.

register(cls, subclass)#

Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

classmethod set_fit(cls, method)#

Wrapper for the fit method.