rf_regressor#
Random Forest Regressor.
Module Contents#
Classes Summary#
Random Forest Regressor. |
Contents#
- class evalml.pipelines.components.estimators.regressors.rf_regressor.RandomForestRegressor(n_estimators: int = 100, max_depth: int = 6, n_jobs: int = - 1, random_seed: Union[int, float] = 0, **kwargs)[source]#
Random Forest Regressor.
- Parameters
n_estimators (float) – The number of trees in the forest. Defaults to 100.
max_depth (int) – Maximum tree depth for base learners. Defaults to 6.
n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “n_estimators”: Integer(10, 1000), “max_depth”: Integer(1, 32),}
model_family
ModelFamily.RANDOM_FOREST
modifies_features
True
modifies_target
False
name
Random Forest Regressor
supported_problem_types
[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Returns importance associated with each feature.
Fits estimator to data.
Find the prediction intervals using the fitted RandomForestRegressor.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- property feature_importance(self) pandas.Series #
Returns importance associated with each feature.
- Returns
Importance associated with each feature.
- Return type
np.ndarray
- Raises
MethodPropertyNotFoundError – If estimator does not have a feature_importance method or a component_obj that implements feature_importance.
- fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)#
Fits estimator to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
self
- get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None) Dict[str, pandas.Series] [source]#
Find the prediction intervals using the fitted RandomForestRegressor.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
y (pd.Series) – Target data. Optional.
coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for.
- Returns
Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.
- Return type
dict
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- predict(self, X: pandas.DataFrame) pandas.Series #
Make predictions using selected features.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
- Returns
Predicted values.
- Return type
pd.Series
- Raises
MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.
- predict_proba(self, X: pandas.DataFrame) pandas.Series #
Make probability estimates for labels.
- Parameters
X (pd.DataFrame) – Features.
- Returns
Probability estimates.
- Return type
pd.Series
- Raises
MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.