baseline_regressor#

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors.

Module Contents#

Classes Summary#

BaselineRegressor

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors.

Contents#

class evalml.pipelines.components.estimators.regressors.baseline_regressor.BaselineRegressor(strategy='mean', random_seed=0, **kwargs)[source]#

Baseline regressor that uses a simple strategy to make predictions. This is useful as a simple baseline regressor to compare with other regressors.

Parameters
  • strategy (str) – Method used to predict. Valid options are “mean”, “median”. Defaults to “mean”.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.BASELINE

modifies_features

True

modifies_target

False

name

Baseline Regressor

supported_problem_types

[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes.

fit

Fits baseline regression component to data.

get_prediction_intervals

Find the prediction intervals using the fitted regressor.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using the baseline regression strategy.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

update_parameters

Updates the parameter dictionary of the component.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Returns importance associated with each feature. Since baseline regressors do not use input features to calculate predictions, returns an array of zeroes.

Returns

An array of zeroes.

Return type

np.ndarray (float)

fit(self, X, y=None)[source]#

Fits baseline regression component to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series) – The target training data of length [n_samples].

Returns

self

Raises

ValueError – If input y is None.

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None) Dict[str, pandas.Series]#

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation.

Parameters
  • X (pd.DataFrame) – Data of shape [n_samples, n_features].

  • y (pd.Series) – Target data. Ignored.

  • coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for.

Returns

Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type

dict

Raises

MethodPropertyNotFoundError – If the estimator does not support Time Series Regression as a problem type.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X)[source]#

Make predictions using the baseline regression strategy.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

predict_proba(self, X: pandas.DataFrame) pandas.Series#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)#

Updates the parameter dictionary of the component.

Parameters
  • update_dict (dict) – A dict of parameters to update.

  • reset_fit (bool, optional) – If True, will set _is_fitted to False.