Exploring search results

After finishing a pipeline search, we can inspect the results. First, let’s build a search of 10 different pipelines to explore.

[1]:
import evalml
from evalml import AutoClassificationSearch

X, y = evalml.demos.load_breast_cancer()

automl = AutoClassificationSearch(objective="f1",
                                  max_pipelines=5)

automl.search(X, y)
*****************************
* Beginning pipeline search *
*****************************

Optimizing for F1. Greater score is better.

Searching up to 5 pipelines.
Possible model types: linear_model, random_forest, catboost, xgboost

✔ CatBoost Classifier w/ Simple Imput...    20%|██        | Elapsed:00:03
✔ CatBoost Classifier w/ Simple Imput...    40%|████      | Elapsed:00:17
✔ Random Forest Classifier w/ One Hot...    60%|██████    | Elapsed:00:27
✔ Logistic Regression Classifier w/ O...    80%|████████  | Elapsed:00:28
✔ Logistic Regression Classifier w/ O...   100%|██████████| Elapsed:00:29
✔ Optimization finished                    100%|██████████| Elapsed:00:29

View Rankings

A summary of all the pipelines built can be returned as a pandas DataFrame. It is sorted by score. EvalML knows based on our objective function whether higher or lower is better.

[2]:
automl.rankings
[2]:
id pipeline_class_name score high_variance_cv parameters
0 0 CatBoostClassificationPipeline 0.979274 False {'impute_strategy': 'most_frequent', 'n_estima...
1 4 LogisticRegressionPipeline 0.976371 False {'penalty': 'l2', 'C': 6.239401330891865, 'imp...
2 3 LogisticRegressionPipeline 0.974941 False {'penalty': 'l2', 'C': 8.444214828324364, 'imp...
3 1 CatBoostClassificationPipeline 0.974830 False {'impute_strategy': 'most_frequent', 'n_estima...
4 2 RFClassificationPipeline 0.963874 False {'n_estimators': 569, 'max_depth': 22, 'impute...

Describe Pipeline

Each pipeline is given an id. We can get more information about any particular pipeline using that id. Here, we will get more information about the pipeline with id = 0.

[3]:
automl.describe_pipeline(0)
*****************************************
* CatBoost Classifier w/ Simple Imputer *
*****************************************

Problem Types: Binary Classification, Multiclass Classification
Model Type: CatBoost Classifier
Objective to Optimize: F1 (greater is better)
Number of features: 30

Pipeline Steps
==============
1. Simple Imputer
         * impute_strategy : most_frequent
2. CatBoost Classifier
         * n_estimators : 202
         * eta : 0.602763376071644
         * max_depth : 4

Training
========
Training for Binary Classification problems.
Total training time (including CV): 3.1 seconds

Cross Validation
----------------
               F1  Precision  Recall   AUC  Log Loss   MCC # Training # Testing
0           0.979      0.975   0.983 0.983     0.156 0.944    379.000   190.000
1           0.975      0.952   1.000 0.995     0.118 0.934    379.000   190.000
2           0.983      0.975   0.992 0.995     0.085 0.955    380.000   189.000
mean        0.979      0.967   0.992 0.991     0.120 0.944          -         -
std         0.004      0.013   0.008 0.007     0.035 0.011          -         -
coef of var 0.004      0.014   0.008 0.007     0.293 0.011          -         -

Get Pipeline

We can get the object of any pipeline via their id as well:

[4]:
automl.get_pipeline(0)
[4]:
<evalml.pipelines.classification.catboost.CatBoostClassificationPipeline at 0x7fafcc475fd0>

Get best pipeline

If we specifically want to get the best pipeline, there is a convenient access

[5]:
automl.best_pipeline
[5]:
<evalml.pipelines.classification.catboost.CatBoostClassificationPipeline at 0x7fafcc475fd0>

Feature Importances

We can get the feature importances of the resulting pipeline

[6]:
pipeline = automl.get_pipeline(0)
pipeline.feature_importances
[6]:
feature importance
0 mean texture 11.352969
1 worst smoothness 8.196440
2 mean concave points 8.066988
3 mean area 7.985677
4 worst perimeter 7.985116
5 worst concave points 6.362056
6 worst area 5.524540
7 worst texture 5.120554
8 perimeter error 4.753916
9 worst concavity 4.293226
10 mean compactness 3.599787
11 area error 3.043145
12 worst radius 2.995585
13 concave points error 2.714613
14 fractal dimension error 2.428115
15 mean symmetry 2.194052
16 mean fractal dimension 2.026659
17 mean concavity 1.730882
18 symmetry error 1.514178
19 compactness error 1.326043
20 smoothness error 1.227851
21 worst symmetry 1.205117
22 mean smoothness 1.041237
23 mean radius 0.939787
24 worst fractal dimension 0.869844
25 worst compactness 0.527123
26 mean perimeter 0.349190
27 texture error 0.324993
28 radius error 0.223363
29 concavity error 0.076957

We can also create a bar plot of the feature importances

[7]:
pipeline.feature_importance_graph(pipeline)

Plot ROC

For binary classification tasks, we can also plot the ROC plot of a specific pipeline:

[8]:
automl.plot.generate_roc_plot(0)

Access raw results

You can also get access to all the underlying data like this

[9]:
automl.results
[9]:
{'pipeline_results': {0: {'id': 0,
   'pipeline_class_name': 'CatBoostClassificationPipeline',
   'pipeline_name': 'CatBoost Classifier w/ Simple Imputer',
   'parameters': {'impute_strategy': 'most_frequent',
    'n_estimators': 202,
    'eta': 0.602763376071644,
    'max_depth': 4},
   'score': 0.979274222435619,
   'high_variance_cv': False,
   'training_time': 3.112525463104248,
   'cv_data': [{'all_objective_scores': OrderedDict([('F1',
                   0.9790794979079498),
                  ('Precision', 0.975),
                  ('Recall', 0.9831932773109243),
                  ('AUC', 0.9831932773109243),
                  ('Log Loss', 0.1556496891601824),
                  ('MCC', 0.9436801731761278),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.07042254,
                           0.07042254, 0.08450704, 0.08450704, 1.        ]),
                    array([0.        , 0.00840336, 0.17647059, 0.17647059, 0.73109244,
                           0.73109244, 0.94117647, 0.94117647, 0.98319328, 0.98319328,
                           0.99159664, 0.99159664, 1.        , 1.        ]),
                    array([1.99999959e+00, 9.99999592e-01, 9.99993074e-01, 9.99992019e-01,
                           9.99465386e-01, 9.99344491e-01, 8.38501415e-01, 7.93190872e-01,
                           5.97384979e-01, 2.01626440e-01, 9.86793713e-02, 8.60714520e-02,
                           4.44265520e-02, 1.79769175e-06]))),
                  ('Confusion Matrix',
                       0    1
                   0  68    3
                   1   2  117),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9790794979079498},
    {'all_objective_scores': OrderedDict([('F1', 0.9754098360655737),
                  ('Precision', 0.952),
                  ('Recall', 1.0),
                  ('AUC', 0.9946739259083915),
                  ('Log Loss', 0.11838678188748847),
                  ('MCC', 0.933568045604951),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.07042254,
                           0.07042254, 1.        ]),
                    array([0.        , 0.00840336, 0.72268908, 0.72268908, 0.95798319,
                           0.95798319, 0.97478992, 0.97478992, 0.98319328, 0.98319328,
                           1.        , 1.        ]),
                    array([1.99999873e+00, 9.99998731e-01, 9.99727090e-01, 9.99712236e-01,
                           9.76909119e-01, 9.72407651e-01, 9.39800583e-01, 9.06770293e-01,
                           8.95490079e-01, 8.87456065e-01, 6.89141765e-01, 5.52202128e-07]))),
                  ('Confusion Matrix',
                       0    1
                   0  65    6
                   1   0  119),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9754098360655737},
    {'all_objective_scores': OrderedDict([('F1', 0.9833333333333334),
                  ('Precision', 0.9752066115702479),
                  ('Recall', 0.9915966386554622),
                  ('AUC', 0.9949579831932773),
                  ('Log Loss', 0.0853788718666447),
                  ('MCC', 0.9546019995535027),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01428571, 0.01428571,
                           0.02857143, 0.02857143, 0.04285714, 0.04285714, 1.        ]),
                    array([0.        , 0.00840336, 0.80672269, 0.80672269, 0.8487395 ,
                           0.8487395 , 0.99159664, 0.99159664, 1.        , 1.        ]),
                    array([1.99999994e+00, 9.99999943e-01, 9.98328495e-01, 9.98258660e-01,
                           9.97198567e-01, 9.96795136e-01, 6.43926686e-01, 5.98010642e-01,
                           2.80390400e-01, 2.73644141e-06]))),
                  ('Confusion Matrix',
                       0    1
                   0  67    3
                   1   1  118),
                  ('# Training', 380),
                  ('# Testing', 189)]),
     'score': 0.9833333333333334}]},
  1: {'id': 1,
   'pipeline_class_name': 'CatBoostClassificationPipeline',
   'pipeline_name': 'CatBoost Classifier w/ Simple Imputer',
   'parameters': {'impute_strategy': 'most_frequent',
    'n_estimators': 733,
    'eta': 0.6458941130666562,
    'max_depth': 5},
   'score': 0.974829648719306,
   'high_variance_cv': False,
   'training_time': 13.907543897628784,
   'cv_data': [{'all_objective_scores': OrderedDict([('F1',
                   0.9658119658119659),
                  ('Precision', 0.9826086956521739),
                  ('Recall', 0.9495798319327731),
                  ('AUC', 0.9818913480885312),
                  ('Log Loss', 0.1915961986850965),
                  ('MCC', 0.9119613020615657),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
                           0.05633803, 0.18309859, 0.18309859, 1.        ]),
                    array([0.        , 0.00840336, 0.13445378, 0.13445378, 0.71428571,
                           0.71428571, 0.95798319, 0.95798319, 0.98319328, 0.98319328,
                           0.99159664, 0.99159664, 1.        , 1.        ]),
                    array([1.99999983e+00, 9.99999825e-01, 9.99998932e-01, 9.99998801e-01,
                           9.99834828e-01, 9.99823067e-01, 4.84501334e-01, 3.89762952e-01,
                           2.57815232e-01, 2.50082621e-01, 1.31435892e-01, 5.28135450e-03,
                           4.39505689e-03, 1.54923584e-06]))),
                  ('Confusion Matrix',
                       0    1
                   0  69    2
                   1   6  113),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9658119658119659},
    {'all_objective_scores': OrderedDict([('F1', 0.9794238683127572),
                  ('Precision', 0.9596774193548387),
                  ('Recall', 1.0),
                  ('AUC', 0.9944372115043201),
                  ('Log Loss', 0.13193419179315086),
                  ('MCC', 0.9445075449666159),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 1.        ]),
                    array([0.        , 0.00840336, 0.71428571, 0.71428571, 0.93277311,
                           0.93277311, 0.95798319, 0.95798319, 1.        , 1.        ]),
                    array([1.99999995e+00, 9.99999955e-01, 9.99950084e-01, 9.99950050e-01,
                           9.98263072e-01, 9.98075367e-01, 9.92107468e-01, 9.81626880e-01,
                           8.48549116e-01, 9.80310846e-08]))),
                  ('Confusion Matrix',
                       0    1
                   0  66    5
                   1   0  119),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9794238683127572},
    {'all_objective_scores': OrderedDict([('F1', 0.979253112033195),
                  ('Precision', 0.9672131147540983),
                  ('Recall', 0.9915966386554622),
                  ('AUC', 0.9965186074429772),
                  ('Log Loss', 0.08008269134314074),
                  ('MCC', 0.9433286178446474),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01428571, 0.01428571,
                           0.02857143, 0.02857143, 0.04285714, 0.04285714, 0.05714286,
                           0.05714286, 1.        ]),
                    array([0.        , 0.00840336, 0.86554622, 0.86554622, 0.93277311,
                           0.93277311, 0.97478992, 0.97478992, 0.98319328, 0.98319328,
                           1.        , 1.        ]),
                    array([1.99999993e+00, 9.99999933e-01, 9.96824758e-01, 9.96754879e-01,
                           9.87204663e-01, 9.69865725e-01, 8.64226060e-01, 7.98271414e-01,
                           6.31950137e-01, 5.76401828e-01, 2.61211320e-01, 6.22541309e-08]))),
                  ('Confusion Matrix',
                       0    1
                   0  66    4
                   1   1  118),
                  ('# Training', 380),
                  ('# Testing', 189)]),
     'score': 0.979253112033195}]},
  2: {'id': 2,
   'pipeline_class_name': 'RFClassificationPipeline',
   'pipeline_name': 'Random Forest Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model',
   'parameters': {'n_estimators': 569,
    'max_depth': 22,
    'impute_strategy': 'most_frequent',
    'percent_features': 0.8593661614465293},
   'score': 0.9638735269218625,
   'high_variance_cv': False,
   'training_time': 10.356285810470581,
   'cv_data': [{'all_objective_scores': OrderedDict([('F1',
                   0.9531914893617022),
                  ('Precision', 0.9655172413793104),
                  ('Recall', 0.9411764705882353),
                  ('AUC', 0.9839625991241567),
                  ('Log Loss', 0.15191818463098422),
                  ('MCC', 0.8778529707465901),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.        , 0.        ,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.02816901,
                           0.02816901, 0.02816901, 0.02816901, 0.04225352, 0.04225352,
                           0.05633803, 0.05633803, 0.07042254, 0.07042254, 0.08450704,
                           0.08450704, 0.09859155, 0.09859155, 0.11267606, 0.11267606,
                           0.12676056, 0.12676056, 0.16901408, 0.16901408, 0.33802817,
                           0.38028169, 0.4084507 , 0.47887324, 0.66197183, 1.        ]),
                    array([0.        , 0.29411765, 0.38655462, 0.42857143, 0.45378151,
                           0.49579832, 0.5210084 , 0.52941176, 0.56302521, 0.57983193,
                           0.61344538, 0.65546218, 0.67226891, 0.68067227, 0.70588235,
                           0.71428571, 0.73109244, 0.7394958 , 0.75630252, 0.75630252,
                           0.80672269, 0.82352941, 0.88235294, 0.88235294, 0.94117647,
                           0.94117647, 0.94957983, 0.94957983, 0.95798319, 0.95798319,
                           0.96638655, 0.96638655, 0.97478992, 0.97478992, 0.98319328,
                           0.98319328, 0.99159664, 0.99159664, 1.        , 1.        ,
                           1.        , 1.        , 1.        , 1.        , 1.        ]),
                    array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
                           9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
                           9.87697715e-01, 9.85940246e-01, 9.84182777e-01, 9.82425308e-01,
                           9.80667838e-01, 9.78910369e-01, 9.77152900e-01, 9.71880492e-01,
                           9.70123023e-01, 9.63093146e-01, 9.56063269e-01, 9.54305800e-01,
                           8.98066784e-01, 8.84007030e-01, 7.48681898e-01, 7.46924429e-01,
                           5.07908612e-01, 5.06151142e-01, 4.88576450e-01, 4.51669596e-01,
                           4.39367311e-01, 4.21792619e-01, 4.20035149e-01, 3.32161687e-01,
                           2.86467487e-01, 2.49560633e-01, 2.33743409e-01, 1.73989455e-01,
                           1.68717047e-01, 1.10720562e-01, 8.26010545e-02, 1.40597540e-02,
                           1.23022847e-02, 5.27240773e-03, 3.51493849e-03, 1.75746924e-03,
                           0.00000000e+00]))),
                  ('Confusion Matrix',
                       0    1
                   0  67    4
                   1   7  112),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9531914893617022},
    {'all_objective_scores': OrderedDict([('F1', 0.959349593495935),
                  ('Precision', 0.9291338582677166),
                  ('Recall', 0.9915966386554622),
                  ('AUC', 0.9915374600544443),
                  ('Log Loss', 0.11252387200612265),
                  ('MCC', 0.8887186971360161),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.        , 0.        ,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
                           0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
                           0.01408451, 0.07042254, 0.09859155, 0.14084507, 0.14084507,
                           0.25352113, 0.28169014, 0.49295775, 0.52112676, 0.56338028,
                           0.64788732, 1.        ]),
                    array([0.        , 0.28571429, 0.37815126, 0.40336134, 0.45378151,
                           0.49579832, 0.53781513, 0.54621849, 0.57142857, 0.60504202,
                           0.62184874, 0.63865546, 0.66386555, 0.67226891, 0.69747899,
                           0.72268908, 0.7394958 , 0.77310924, 0.78991597, 0.80672269,
                           0.85714286, 0.87394958, 0.8907563 , 0.91596639, 0.93277311,
                           0.99159664, 0.99159664, 0.99159664, 0.99159664, 1.        ,
                           1.        , 1.        , 1.        , 1.        , 1.        ,
                           1.        , 1.        ]),
                    array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
                           9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
                           9.87697715e-01, 9.84182777e-01, 9.80667838e-01, 9.77152900e-01,
                           9.75395431e-01, 9.73637961e-01, 9.71880492e-01, 9.63093146e-01,
                           9.61335677e-01, 9.47275923e-01, 9.45518453e-01, 9.42003515e-01,
                           9.31458699e-01, 9.22671353e-01, 9.19156415e-01, 9.01581722e-01,
                           8.84007030e-01, 6.88927944e-01, 5.46572935e-01, 5.18453427e-01,
                           4.63971880e-01, 4.62214411e-01, 2.05623902e-01, 1.81019332e-01,
                           1.40597540e-02, 5.27240773e-03, 3.51493849e-03, 1.75746924e-03,
                           0.00000000e+00]))),
                  ('Confusion Matrix',
                       0    1
                   0  62    9
                   1   1  118),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.959349593495935},
    {'all_objective_scores': OrderedDict([('F1', 0.9790794979079498),
                  ('Precision', 0.975),
                  ('Recall', 0.9831932773109243),
                  ('AUC', 0.9966386554621849),
                  ('Log Loss', 0.11505562573216208),
                  ('MCC', 0.9431710402960837),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.        , 0.        ,
                           0.        , 0.        , 0.        , 0.        , 0.        ,
                           0.        , 0.        , 0.        , 0.        , 0.        ,
                           0.        , 0.        , 0.        , 0.        , 0.        ,
                           0.        , 0.        , 0.        , 0.        , 0.01428571,
                           0.01428571, 0.02857143, 0.02857143, 0.04285714, 0.04285714,
                           0.11428571, 0.11428571, 0.4       , 0.44285714, 0.51428571,
                           0.54285714, 0.55714286, 0.58571429, 0.61428571, 0.64285714,
                           0.71428571, 1.        ]),
                    array([0.        , 0.19327731, 0.27731092, 0.35294118, 0.37815126,
                           0.41176471, 0.43697479, 0.47058824, 0.49579832, 0.51260504,
                           0.52941176, 0.55462185, 0.57983193, 0.59663866, 0.6302521 ,
                           0.64705882, 0.66386555, 0.68907563, 0.70588235, 0.76470588,
                           0.78151261, 0.82352941, 0.84033613, 0.8907563 , 0.8907563 ,
                           0.93277311, 0.93277311, 0.98319328, 0.98319328, 0.99159664,
                           0.99159664, 1.        , 1.        , 1.        , 1.        ,
                           1.        , 1.        , 1.        , 1.        , 1.        ,
                           1.        , 1.        ]),
                    array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
                           9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
                           9.87697715e-01, 9.84182777e-01, 9.82425308e-01, 9.80667838e-01,
                           9.73637961e-01, 9.64850615e-01, 9.59578207e-01, 9.50790861e-01,
                           9.43760984e-01, 9.34973638e-01, 9.31458699e-01, 8.94551845e-01,
                           8.91036907e-01, 8.40070299e-01, 8.18980668e-01, 7.59226714e-01,
                           7.50439367e-01, 7.13532513e-01, 6.97715290e-01, 5.37785589e-01,
                           5.00878735e-01, 4.93848858e-01, 4.14762742e-01, 3.84885764e-01,
                           5.27240773e-02, 4.21792619e-02, 1.58172232e-02, 1.40597540e-02,
                           1.23022847e-02, 1.05448155e-02, 5.27240773e-03, 3.51493849e-03,
                           1.75746924e-03, 0.00000000e+00]))),
                  ('Confusion Matrix',
                       0    1
                   0  67    3
                   1   2  117),
                  ('# Training', 380),
                  ('# Testing', 189)]),
     'score': 0.9790794979079498}]},
  3: {'id': 3,
   'pipeline_class_name': 'LogisticRegressionPipeline',
   'pipeline_name': 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler',
   'parameters': {'penalty': 'l2',
    'C': 8.444214828324364,
    'impute_strategy': 'most_frequent'},
   'score': 0.9749409107621198,
   'high_variance_cv': False,
   'training_time': 1.4055705070495605,
   'cv_data': [{'all_objective_scores': OrderedDict([('F1',
                   0.9666666666666667),
                  ('Precision', 0.9586776859504132),
                  ('Recall', 0.9747899159663865),
                  ('AUC', 0.9888744230086401),
                  ('Log Loss', 0.15428164230084002),
                  ('MCC', 0.9097672817424011),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
                           0.05633803, 0.07042254, 0.07042254, 0.21126761, 0.21126761,
                           1.        ]),
                    array([0.        , 0.00840336, 0.59663866, 0.59663866, 0.85714286,
                           0.85714286, 0.92436975, 0.92436975, 0.94117647, 0.94117647,
                           0.97478992, 0.97478992, 0.99159664, 0.99159664, 1.        ,
                           1.        ]),
                    array([2.00000000e+00, 1.00000000e+00, 9.99791297e-01, 9.99773957e-01,
                           9.78489727e-01, 9.76152961e-01, 8.46462522e-01, 8.36499157e-01,
                           7.95514397e-01, 7.53467428e-01, 5.57693049e-01, 5.27060963e-01,
                           3.63797569e-01, 5.00394079e-04, 4.83643881e-04, 2.02468070e-23]))),
                  ('Confusion Matrix',
                       0    1
                   0  66    5
                   1   3  116),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9666666666666667},
    {'all_objective_scores': OrderedDict([('F1', 0.979253112033195),
                  ('Precision', 0.9672131147540983),
                  ('Recall', 0.9915966386554622),
                  ('AUC', 0.9984613563735354),
                  ('Log Loss', 0.053534692439125425),
                  ('MCC', 0.943843520216036),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.09859155,
                           0.09859155, 1.        ]),
                    array([0.        , 0.00840336, 0.96638655, 0.96638655, 0.97478992,
                           0.97478992, 0.98319328, 0.98319328, 0.99159664, 0.99159664,
                           1.        , 1.        ]),
                    array([2.00000000e+00, 1.00000000e+00, 9.05699907e-01, 8.58386233e-01,
                           8.38649439e-01, 7.59595197e-01, 7.33539439e-01, 7.17465204e-01,
                           5.35804763e-01, 2.35496200e-01, 2.27785221e-01, 1.68800601e-42]))),
                  ('Confusion Matrix',
                       0    1
                   0  67    4
                   1   1  118),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.979253112033195},
    {'all_objective_scores': OrderedDict([('F1', 0.9789029535864979),
                  ('Precision', 0.9830508474576272),
                  ('Recall', 0.9747899159663865),
                  ('AUC', 0.9963985594237695),
                  ('Log Loss', 0.07005450515930882),
                  ('MCC', 0.9435040132749904),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01428571, 0.01428571,
                           0.02857143, 0.02857143, 0.04285714, 0.04285714, 1.        ]),
                    array([0.        , 0.00840336, 0.78991597, 0.78991597, 0.97478992,
                           0.97478992, 0.98319328, 0.98319328, 1.        , 1.        ]),
                    array([2.00000000e+00, 9.99999996e-01, 9.88096914e-01, 9.87891833e-01,
                           5.69263068e-01, 5.39434729e-01, 4.87956909e-01, 4.17720767e-01,
                           3.49086653e-01, 6.54254829e-17]))),
                  ('Confusion Matrix',
                       0    1
                   0  68    2
                   1   3  116),
                  ('# Training', 380),
                  ('# Testing', 189)]),
     'score': 0.9789029535864979}]},
  4: {'id': 4,
   'pipeline_class_name': 'LogisticRegressionPipeline',
   'pipeline_name': 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler',
   'parameters': {'penalty': 'l2',
    'C': 6.239401330891865,
    'impute_strategy': 'median'},
   'score': 0.976371018670262,
   'high_variance_cv': False,
   'training_time': 0.1784498691558838,
   'cv_data': [{'all_objective_scores': OrderedDict([('F1',
                   0.9666666666666667),
                  ('Precision', 0.9586776859504132),
                  ('Recall', 0.9747899159663865),
                  ('AUC', 0.9894662090188188),
                  ('Log Loss', 0.14024941178893052),
                  ('MCC', 0.9097672817424011),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
                           0.05633803, 0.07042254, 0.07042254, 0.16901408, 0.16901408,
                           1.        ]),
                    array([0.        , 0.00840336, 0.59663866, 0.59663866, 0.85714286,
                           0.85714286, 0.93277311, 0.93277311, 0.94957983, 0.94957983,
                           0.97478992, 0.97478992, 0.99159664, 0.99159664, 1.        ,
                           1.        ]),
                    array([2.00000000e+00, 1.00000000e+00, 9.99666579e-01, 9.99609134e-01,
                           9.74987821e-01, 9.70181648e-01, 8.22360338e-01, 8.20657330e-01,
                           6.90424546e-01, 6.67942883e-01, 5.59753184e-01, 5.55141738e-01,
                           3.76389954e-01, 4.85366478e-03, 2.54470198e-03, 9.55683397e-22]))),
                  ('Confusion Matrix',
                       0    1
                   0  66    5
                   1   3  116),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.9666666666666667},
    {'all_objective_scores': OrderedDict([('F1', 0.979253112033195),
                  ('Precision', 0.9672131147540983),
                  ('Recall', 0.9915966386554622),
                  ('AUC', 0.9986980707776069),
                  ('Log Loss', 0.05225479208679104),
                  ('MCC', 0.943843520216036),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01408451, 0.01408451,
                           0.04225352, 0.04225352, 0.08450704, 0.08450704, 1.        ]),
                    array([0.        , 0.00840336, 0.96638655, 0.96638655, 0.98319328,
                           0.98319328, 0.99159664, 0.99159664, 1.        , 1.        ]),
                    array([2.00000000e+00, 9.99999999e-01, 9.12346914e-01, 8.61927597e-01,
                           7.43130971e-01, 7.06151816e-01, 5.87382590e-01, 3.82148043e-01,
                           2.73319359e-01, 3.76404976e-39]))),
                  ('Confusion Matrix',
                       0    1
                   0  67    4
                   1   1  118),
                  ('# Training', 379),
                  ('# Testing', 190)]),
     'score': 0.979253112033195},
    {'all_objective_scores': OrderedDict([('F1', 0.9831932773109243),
                  ('Precision', 0.9831932773109243),
                  ('Recall', 0.9831932773109243),
                  ('AUC', 0.9963985594237695),
                  ('Log Loss', 0.06645759473825),
                  ('MCC', 0.9546218487394958),
                  ('ROC',
                   (array([0.        , 0.        , 0.        , 0.01428571, 0.01428571,
                           0.02857143, 0.02857143, 0.04285714, 0.04285714, 1.        ]),
                    array([0.        , 0.00840336, 0.78991597, 0.78991597, 0.97478992,
                           0.97478992, 0.98319328, 0.98319328, 1.        , 1.        ]),
                    array([1.99999999e+00, 9.99999985e-01, 9.82750455e-01, 9.82286323e-01,
                           5.46864728e-01, 5.21939119e-01, 5.19466434e-01, 4.30449096e-01,
                           3.98630517e-01, 1.92092409e-15]))),
                  ('Confusion Matrix',
                       0    1
                   0  68    2
                   1   2  117),
                  ('# Training', 380),
                  ('# Testing', 189)]),
     'score': 0.9831932773109243}]}},
 'search_order': [0, 1, 2, 3, 4]}