Exploring search results¶
After finishing a pipeline search, we can inspect the results. First, let’s build a search of 10 different pipelines to explore.
[1]:
import evalml
from evalml import AutoClassificationSearch
X, y = evalml.demos.load_breast_cancer()
automl = AutoClassificationSearch(objective="f1",
max_pipelines=5)
automl.search(X, y)
*****************************
* Beginning pipeline search *
*****************************
Optimizing for F1. Greater score is better.
Searching up to 5 pipelines.
Possible model types: linear_model, random_forest, catboost, xgboost
✔ CatBoost Classifier w/ Simple Imput... 20%|██ | Elapsed:00:03
✔ CatBoost Classifier w/ Simple Imput... 40%|████ | Elapsed:00:17
✔ Random Forest Classifier w/ One Hot... 60%|██████ | Elapsed:00:27
✔ Logistic Regression Classifier w/ O... 80%|████████ | Elapsed:00:28
✔ Logistic Regression Classifier w/ O... 100%|██████████| Elapsed:00:29
✔ Optimization finished 100%|██████████| Elapsed:00:29
View Rankings¶
A summary of all the pipelines built can be returned as a pandas DataFrame. It is sorted by score. EvalML knows based on our objective function whether higher or lower is better.
[2]:
automl.rankings
[2]:
id | pipeline_class_name | score | high_variance_cv | parameters | |
---|---|---|---|---|---|
0 | 0 | CatBoostClassificationPipeline | 0.979274 | False | {'impute_strategy': 'most_frequent', 'n_estima... |
1 | 4 | LogisticRegressionPipeline | 0.976371 | False | {'penalty': 'l2', 'C': 6.239401330891865, 'imp... |
2 | 3 | LogisticRegressionPipeline | 0.974941 | False | {'penalty': 'l2', 'C': 8.444214828324364, 'imp... |
3 | 1 | CatBoostClassificationPipeline | 0.974830 | False | {'impute_strategy': 'most_frequent', 'n_estima... |
4 | 2 | RFClassificationPipeline | 0.963874 | False | {'n_estimators': 569, 'max_depth': 22, 'impute... |
Describe Pipeline¶
Each pipeline is given an id
. We can get more information about any particular pipeline using that id
. Here, we will get more information about the pipeline with id = 0
.
[3]:
automl.describe_pipeline(0)
*****************************************
* CatBoost Classifier w/ Simple Imputer *
*****************************************
Problem Types: Binary Classification, Multiclass Classification
Model Type: CatBoost Classifier
Objective to Optimize: F1 (greater is better)
Number of features: 30
Pipeline Steps
==============
1. Simple Imputer
* impute_strategy : most_frequent
2. CatBoost Classifier
* n_estimators : 202
* eta : 0.602763376071644
* max_depth : 4
Training
========
Training for Binary Classification problems.
Total training time (including CV): 3.1 seconds
Cross Validation
----------------
F1 Precision Recall AUC Log Loss MCC # Training # Testing
0 0.979 0.975 0.983 0.983 0.156 0.944 379.000 190.000
1 0.975 0.952 1.000 0.995 0.118 0.934 379.000 190.000
2 0.983 0.975 0.992 0.995 0.085 0.955 380.000 189.000
mean 0.979 0.967 0.992 0.991 0.120 0.944 - -
std 0.004 0.013 0.008 0.007 0.035 0.011 - -
coef of var 0.004 0.014 0.008 0.007 0.293 0.011 - -
Get Pipeline¶
We can get the object of any pipeline via their id
as well:
[4]:
automl.get_pipeline(0)
[4]:
<evalml.pipelines.classification.catboost.CatBoostClassificationPipeline at 0x7fafcc475fd0>
Get best pipeline¶
If we specifically want to get the best pipeline, there is a convenient access
[5]:
automl.best_pipeline
[5]:
<evalml.pipelines.classification.catboost.CatBoostClassificationPipeline at 0x7fafcc475fd0>
Feature Importances¶
We can get the feature importances of the resulting pipeline
[6]:
pipeline = automl.get_pipeline(0)
pipeline.feature_importances
[6]:
feature | importance | |
---|---|---|
0 | mean texture | 11.352969 |
1 | worst smoothness | 8.196440 |
2 | mean concave points | 8.066988 |
3 | mean area | 7.985677 |
4 | worst perimeter | 7.985116 |
5 | worst concave points | 6.362056 |
6 | worst area | 5.524540 |
7 | worst texture | 5.120554 |
8 | perimeter error | 4.753916 |
9 | worst concavity | 4.293226 |
10 | mean compactness | 3.599787 |
11 | area error | 3.043145 |
12 | worst radius | 2.995585 |
13 | concave points error | 2.714613 |
14 | fractal dimension error | 2.428115 |
15 | mean symmetry | 2.194052 |
16 | mean fractal dimension | 2.026659 |
17 | mean concavity | 1.730882 |
18 | symmetry error | 1.514178 |
19 | compactness error | 1.326043 |
20 | smoothness error | 1.227851 |
21 | worst symmetry | 1.205117 |
22 | mean smoothness | 1.041237 |
23 | mean radius | 0.939787 |
24 | worst fractal dimension | 0.869844 |
25 | worst compactness | 0.527123 |
26 | mean perimeter | 0.349190 |
27 | texture error | 0.324993 |
28 | radius error | 0.223363 |
29 | concavity error | 0.076957 |
We can also create a bar plot of the feature importances
[7]:
pipeline.feature_importance_graph(pipeline)
Plot ROC¶
For binary classification tasks, we can also plot the ROC plot of a specific pipeline:
[8]:
automl.plot.generate_roc_plot(0)
Access raw results¶
You can also get access to all the underlying data like this
[9]:
automl.results
[9]:
{'pipeline_results': {0: {'id': 0,
'pipeline_class_name': 'CatBoostClassificationPipeline',
'pipeline_name': 'CatBoost Classifier w/ Simple Imputer',
'parameters': {'impute_strategy': 'most_frequent',
'n_estimators': 202,
'eta': 0.602763376071644,
'max_depth': 4},
'score': 0.979274222435619,
'high_variance_cv': False,
'training_time': 3.112525463104248,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9790794979079498),
('Precision', 0.975),
('Recall', 0.9831932773109243),
('AUC', 0.9831932773109243),
('Log Loss', 0.1556496891601824),
('MCC', 0.9436801731761278),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.07042254,
0.07042254, 0.08450704, 0.08450704, 1. ]),
array([0. , 0.00840336, 0.17647059, 0.17647059, 0.73109244,
0.73109244, 0.94117647, 0.94117647, 0.98319328, 0.98319328,
0.99159664, 0.99159664, 1. , 1. ]),
array([1.99999959e+00, 9.99999592e-01, 9.99993074e-01, 9.99992019e-01,
9.99465386e-01, 9.99344491e-01, 8.38501415e-01, 7.93190872e-01,
5.97384979e-01, 2.01626440e-01, 9.86793713e-02, 8.60714520e-02,
4.44265520e-02, 1.79769175e-06]))),
('Confusion Matrix',
0 1
0 68 3
1 2 117),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9790794979079498},
{'all_objective_scores': OrderedDict([('F1', 0.9754098360655737),
('Precision', 0.952),
('Recall', 1.0),
('AUC', 0.9946739259083915),
('Log Loss', 0.11838678188748847),
('MCC', 0.933568045604951),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.07042254,
0.07042254, 1. ]),
array([0. , 0.00840336, 0.72268908, 0.72268908, 0.95798319,
0.95798319, 0.97478992, 0.97478992, 0.98319328, 0.98319328,
1. , 1. ]),
array([1.99999873e+00, 9.99998731e-01, 9.99727090e-01, 9.99712236e-01,
9.76909119e-01, 9.72407651e-01, 9.39800583e-01, 9.06770293e-01,
8.95490079e-01, 8.87456065e-01, 6.89141765e-01, 5.52202128e-07]))),
('Confusion Matrix',
0 1
0 65 6
1 0 119),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9754098360655737},
{'all_objective_scores': OrderedDict([('F1', 0.9833333333333334),
('Precision', 0.9752066115702479),
('Recall', 0.9915966386554622),
('AUC', 0.9949579831932773),
('Log Loss', 0.0853788718666447),
('MCC', 0.9546019995535027),
('ROC',
(array([0. , 0. , 0. , 0.01428571, 0.01428571,
0.02857143, 0.02857143, 0.04285714, 0.04285714, 1. ]),
array([0. , 0.00840336, 0.80672269, 0.80672269, 0.8487395 ,
0.8487395 , 0.99159664, 0.99159664, 1. , 1. ]),
array([1.99999994e+00, 9.99999943e-01, 9.98328495e-01, 9.98258660e-01,
9.97198567e-01, 9.96795136e-01, 6.43926686e-01, 5.98010642e-01,
2.80390400e-01, 2.73644141e-06]))),
('Confusion Matrix',
0 1
0 67 3
1 1 118),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9833333333333334}]},
1: {'id': 1,
'pipeline_class_name': 'CatBoostClassificationPipeline',
'pipeline_name': 'CatBoost Classifier w/ Simple Imputer',
'parameters': {'impute_strategy': 'most_frequent',
'n_estimators': 733,
'eta': 0.6458941130666562,
'max_depth': 5},
'score': 0.974829648719306,
'high_variance_cv': False,
'training_time': 13.907543897628784,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9658119658119659),
('Precision', 0.9826086956521739),
('Recall', 0.9495798319327731),
('AUC', 0.9818913480885312),
('Log Loss', 0.1915961986850965),
('MCC', 0.9119613020615657),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
0.05633803, 0.18309859, 0.18309859, 1. ]),
array([0. , 0.00840336, 0.13445378, 0.13445378, 0.71428571,
0.71428571, 0.95798319, 0.95798319, 0.98319328, 0.98319328,
0.99159664, 0.99159664, 1. , 1. ]),
array([1.99999983e+00, 9.99999825e-01, 9.99998932e-01, 9.99998801e-01,
9.99834828e-01, 9.99823067e-01, 4.84501334e-01, 3.89762952e-01,
2.57815232e-01, 2.50082621e-01, 1.31435892e-01, 5.28135450e-03,
4.39505689e-03, 1.54923584e-06]))),
('Confusion Matrix',
0 1
0 69 2
1 6 113),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9658119658119659},
{'all_objective_scores': OrderedDict([('F1', 0.9794238683127572),
('Precision', 0.9596774193548387),
('Recall', 1.0),
('AUC', 0.9944372115043201),
('Log Loss', 0.13193419179315086),
('MCC', 0.9445075449666159),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 1. ]),
array([0. , 0.00840336, 0.71428571, 0.71428571, 0.93277311,
0.93277311, 0.95798319, 0.95798319, 1. , 1. ]),
array([1.99999995e+00, 9.99999955e-01, 9.99950084e-01, 9.99950050e-01,
9.98263072e-01, 9.98075367e-01, 9.92107468e-01, 9.81626880e-01,
8.48549116e-01, 9.80310846e-08]))),
('Confusion Matrix',
0 1
0 66 5
1 0 119),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9794238683127572},
{'all_objective_scores': OrderedDict([('F1', 0.979253112033195),
('Precision', 0.9672131147540983),
('Recall', 0.9915966386554622),
('AUC', 0.9965186074429772),
('Log Loss', 0.08008269134314074),
('MCC', 0.9433286178446474),
('ROC',
(array([0. , 0. , 0. , 0.01428571, 0.01428571,
0.02857143, 0.02857143, 0.04285714, 0.04285714, 0.05714286,
0.05714286, 1. ]),
array([0. , 0.00840336, 0.86554622, 0.86554622, 0.93277311,
0.93277311, 0.97478992, 0.97478992, 0.98319328, 0.98319328,
1. , 1. ]),
array([1.99999993e+00, 9.99999933e-01, 9.96824758e-01, 9.96754879e-01,
9.87204663e-01, 9.69865725e-01, 8.64226060e-01, 7.98271414e-01,
6.31950137e-01, 5.76401828e-01, 2.61211320e-01, 6.22541309e-08]))),
('Confusion Matrix',
0 1
0 66 4
1 1 118),
('# Training', 380),
('# Testing', 189)]),
'score': 0.979253112033195}]},
2: {'id': 2,
'pipeline_class_name': 'RFClassificationPipeline',
'pipeline_name': 'Random Forest Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model',
'parameters': {'n_estimators': 569,
'max_depth': 22,
'impute_strategy': 'most_frequent',
'percent_features': 0.8593661614465293},
'score': 0.9638735269218625,
'high_variance_cv': False,
'training_time': 10.356285810470581,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9531914893617022),
('Precision', 0.9655172413793104),
('Recall', 0.9411764705882353),
('AUC', 0.9839625991241567),
('Log Loss', 0.15191818463098422),
('MCC', 0.8778529707465901),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.02816901,
0.02816901, 0.02816901, 0.02816901, 0.04225352, 0.04225352,
0.05633803, 0.05633803, 0.07042254, 0.07042254, 0.08450704,
0.08450704, 0.09859155, 0.09859155, 0.11267606, 0.11267606,
0.12676056, 0.12676056, 0.16901408, 0.16901408, 0.33802817,
0.38028169, 0.4084507 , 0.47887324, 0.66197183, 1. ]),
array([0. , 0.29411765, 0.38655462, 0.42857143, 0.45378151,
0.49579832, 0.5210084 , 0.52941176, 0.56302521, 0.57983193,
0.61344538, 0.65546218, 0.67226891, 0.68067227, 0.70588235,
0.71428571, 0.73109244, 0.7394958 , 0.75630252, 0.75630252,
0.80672269, 0.82352941, 0.88235294, 0.88235294, 0.94117647,
0.94117647, 0.94957983, 0.94957983, 0.95798319, 0.95798319,
0.96638655, 0.96638655, 0.97478992, 0.97478992, 0.98319328,
0.98319328, 0.99159664, 0.99159664, 1. , 1. ,
1. , 1. , 1. , 1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
9.87697715e-01, 9.85940246e-01, 9.84182777e-01, 9.82425308e-01,
9.80667838e-01, 9.78910369e-01, 9.77152900e-01, 9.71880492e-01,
9.70123023e-01, 9.63093146e-01, 9.56063269e-01, 9.54305800e-01,
8.98066784e-01, 8.84007030e-01, 7.48681898e-01, 7.46924429e-01,
5.07908612e-01, 5.06151142e-01, 4.88576450e-01, 4.51669596e-01,
4.39367311e-01, 4.21792619e-01, 4.20035149e-01, 3.32161687e-01,
2.86467487e-01, 2.49560633e-01, 2.33743409e-01, 1.73989455e-01,
1.68717047e-01, 1.10720562e-01, 8.26010545e-02, 1.40597540e-02,
1.23022847e-02, 5.27240773e-03, 3.51493849e-03, 1.75746924e-03,
0.00000000e+00]))),
('Confusion Matrix',
0 1
0 67 4
1 7 112),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9531914893617022},
{'all_objective_scores': OrderedDict([('F1', 0.959349593495935),
('Precision', 0.9291338582677166),
('Recall', 0.9915966386554622),
('AUC', 0.9915374600544443),
('Log Loss', 0.11252387200612265),
('MCC', 0.8887186971360161),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.01408451, 0.01408451, 0.01408451, 0.01408451,
0.01408451, 0.07042254, 0.09859155, 0.14084507, 0.14084507,
0.25352113, 0.28169014, 0.49295775, 0.52112676, 0.56338028,
0.64788732, 1. ]),
array([0. , 0.28571429, 0.37815126, 0.40336134, 0.45378151,
0.49579832, 0.53781513, 0.54621849, 0.57142857, 0.60504202,
0.62184874, 0.63865546, 0.66386555, 0.67226891, 0.69747899,
0.72268908, 0.7394958 , 0.77310924, 0.78991597, 0.80672269,
0.85714286, 0.87394958, 0.8907563 , 0.91596639, 0.93277311,
0.99159664, 0.99159664, 0.99159664, 0.99159664, 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
9.87697715e-01, 9.84182777e-01, 9.80667838e-01, 9.77152900e-01,
9.75395431e-01, 9.73637961e-01, 9.71880492e-01, 9.63093146e-01,
9.61335677e-01, 9.47275923e-01, 9.45518453e-01, 9.42003515e-01,
9.31458699e-01, 9.22671353e-01, 9.19156415e-01, 9.01581722e-01,
8.84007030e-01, 6.88927944e-01, 5.46572935e-01, 5.18453427e-01,
4.63971880e-01, 4.62214411e-01, 2.05623902e-01, 1.81019332e-01,
1.40597540e-02, 5.27240773e-03, 3.51493849e-03, 1.75746924e-03,
0.00000000e+00]))),
('Confusion Matrix',
0 1
0 62 9
1 1 118),
('# Training', 379),
('# Testing', 190)]),
'score': 0.959349593495935},
{'all_objective_scores': OrderedDict([('F1', 0.9790794979079498),
('Precision', 0.975),
('Recall', 0.9831932773109243),
('AUC', 0.9966386554621849),
('Log Loss', 0.11505562573216208),
('MCC', 0.9431710402960837),
('ROC',
(array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.01428571,
0.01428571, 0.02857143, 0.02857143, 0.04285714, 0.04285714,
0.11428571, 0.11428571, 0.4 , 0.44285714, 0.51428571,
0.54285714, 0.55714286, 0.58571429, 0.61428571, 0.64285714,
0.71428571, 1. ]),
array([0. , 0.19327731, 0.27731092, 0.35294118, 0.37815126,
0.41176471, 0.43697479, 0.47058824, 0.49579832, 0.51260504,
0.52941176, 0.55462185, 0.57983193, 0.59663866, 0.6302521 ,
0.64705882, 0.66386555, 0.68907563, 0.70588235, 0.76470588,
0.78151261, 0.82352941, 0.84033613, 0.8907563 , 0.8907563 ,
0.93277311, 0.93277311, 0.98319328, 0.98319328, 0.99159664,
0.99159664, 1. , 1. , 1. , 1. ,
1. , 1. , 1. , 1. , 1. ,
1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.98242531e-01, 9.96485062e-01,
9.94727592e-01, 9.92970123e-01, 9.91212654e-01, 9.89455185e-01,
9.87697715e-01, 9.84182777e-01, 9.82425308e-01, 9.80667838e-01,
9.73637961e-01, 9.64850615e-01, 9.59578207e-01, 9.50790861e-01,
9.43760984e-01, 9.34973638e-01, 9.31458699e-01, 8.94551845e-01,
8.91036907e-01, 8.40070299e-01, 8.18980668e-01, 7.59226714e-01,
7.50439367e-01, 7.13532513e-01, 6.97715290e-01, 5.37785589e-01,
5.00878735e-01, 4.93848858e-01, 4.14762742e-01, 3.84885764e-01,
5.27240773e-02, 4.21792619e-02, 1.58172232e-02, 1.40597540e-02,
1.23022847e-02, 1.05448155e-02, 5.27240773e-03, 3.51493849e-03,
1.75746924e-03, 0.00000000e+00]))),
('Confusion Matrix',
0 1
0 67 3
1 2 117),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9790794979079498}]},
3: {'id': 3,
'pipeline_class_name': 'LogisticRegressionPipeline',
'pipeline_name': 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler',
'parameters': {'penalty': 'l2',
'C': 8.444214828324364,
'impute_strategy': 'most_frequent'},
'score': 0.9749409107621198,
'high_variance_cv': False,
'training_time': 1.4055705070495605,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9666666666666667),
('Precision', 0.9586776859504132),
('Recall', 0.9747899159663865),
('AUC', 0.9888744230086401),
('Log Loss', 0.15428164230084002),
('MCC', 0.9097672817424011),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
0.05633803, 0.07042254, 0.07042254, 0.21126761, 0.21126761,
1. ]),
array([0. , 0.00840336, 0.59663866, 0.59663866, 0.85714286,
0.85714286, 0.92436975, 0.92436975, 0.94117647, 0.94117647,
0.97478992, 0.97478992, 0.99159664, 0.99159664, 1. ,
1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.99791297e-01, 9.99773957e-01,
9.78489727e-01, 9.76152961e-01, 8.46462522e-01, 8.36499157e-01,
7.95514397e-01, 7.53467428e-01, 5.57693049e-01, 5.27060963e-01,
3.63797569e-01, 5.00394079e-04, 4.83643881e-04, 2.02468070e-23]))),
('Confusion Matrix',
0 1
0 66 5
1 3 116),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9666666666666667},
{'all_objective_scores': OrderedDict([('F1', 0.979253112033195),
('Precision', 0.9672131147540983),
('Recall', 0.9915966386554622),
('AUC', 0.9984613563735354),
('Log Loss', 0.053534692439125425),
('MCC', 0.943843520216036),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.09859155,
0.09859155, 1. ]),
array([0. , 0.00840336, 0.96638655, 0.96638655, 0.97478992,
0.97478992, 0.98319328, 0.98319328, 0.99159664, 0.99159664,
1. , 1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.05699907e-01, 8.58386233e-01,
8.38649439e-01, 7.59595197e-01, 7.33539439e-01, 7.17465204e-01,
5.35804763e-01, 2.35496200e-01, 2.27785221e-01, 1.68800601e-42]))),
('Confusion Matrix',
0 1
0 67 4
1 1 118),
('# Training', 379),
('# Testing', 190)]),
'score': 0.979253112033195},
{'all_objective_scores': OrderedDict([('F1', 0.9789029535864979),
('Precision', 0.9830508474576272),
('Recall', 0.9747899159663865),
('AUC', 0.9963985594237695),
('Log Loss', 0.07005450515930882),
('MCC', 0.9435040132749904),
('ROC',
(array([0. , 0. , 0. , 0.01428571, 0.01428571,
0.02857143, 0.02857143, 0.04285714, 0.04285714, 1. ]),
array([0. , 0.00840336, 0.78991597, 0.78991597, 0.97478992,
0.97478992, 0.98319328, 0.98319328, 1. , 1. ]),
array([2.00000000e+00, 9.99999996e-01, 9.88096914e-01, 9.87891833e-01,
5.69263068e-01, 5.39434729e-01, 4.87956909e-01, 4.17720767e-01,
3.49086653e-01, 6.54254829e-17]))),
('Confusion Matrix',
0 1
0 68 2
1 3 116),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9789029535864979}]},
4: {'id': 4,
'pipeline_class_name': 'LogisticRegressionPipeline',
'pipeline_name': 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler',
'parameters': {'penalty': 'l2',
'C': 6.239401330891865,
'impute_strategy': 'median'},
'score': 0.976371018670262,
'high_variance_cv': False,
'training_time': 0.1784498691558838,
'cv_data': [{'all_objective_scores': OrderedDict([('F1',
0.9666666666666667),
('Precision', 0.9586776859504132),
('Recall', 0.9747899159663865),
('AUC', 0.9894662090188188),
('Log Loss', 0.14024941178893052),
('MCC', 0.9097672817424011),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.02816901, 0.02816901, 0.04225352, 0.04225352, 0.05633803,
0.05633803, 0.07042254, 0.07042254, 0.16901408, 0.16901408,
1. ]),
array([0. , 0.00840336, 0.59663866, 0.59663866, 0.85714286,
0.85714286, 0.93277311, 0.93277311, 0.94957983, 0.94957983,
0.97478992, 0.97478992, 0.99159664, 0.99159664, 1. ,
1. ]),
array([2.00000000e+00, 1.00000000e+00, 9.99666579e-01, 9.99609134e-01,
9.74987821e-01, 9.70181648e-01, 8.22360338e-01, 8.20657330e-01,
6.90424546e-01, 6.67942883e-01, 5.59753184e-01, 5.55141738e-01,
3.76389954e-01, 4.85366478e-03, 2.54470198e-03, 9.55683397e-22]))),
('Confusion Matrix',
0 1
0 66 5
1 3 116),
('# Training', 379),
('# Testing', 190)]),
'score': 0.9666666666666667},
{'all_objective_scores': OrderedDict([('F1', 0.979253112033195),
('Precision', 0.9672131147540983),
('Recall', 0.9915966386554622),
('AUC', 0.9986980707776069),
('Log Loss', 0.05225479208679104),
('MCC', 0.943843520216036),
('ROC',
(array([0. , 0. , 0. , 0.01408451, 0.01408451,
0.04225352, 0.04225352, 0.08450704, 0.08450704, 1. ]),
array([0. , 0.00840336, 0.96638655, 0.96638655, 0.98319328,
0.98319328, 0.99159664, 0.99159664, 1. , 1. ]),
array([2.00000000e+00, 9.99999999e-01, 9.12346914e-01, 8.61927597e-01,
7.43130971e-01, 7.06151816e-01, 5.87382590e-01, 3.82148043e-01,
2.73319359e-01, 3.76404976e-39]))),
('Confusion Matrix',
0 1
0 67 4
1 1 118),
('# Training', 379),
('# Testing', 190)]),
'score': 0.979253112033195},
{'all_objective_scores': OrderedDict([('F1', 0.9831932773109243),
('Precision', 0.9831932773109243),
('Recall', 0.9831932773109243),
('AUC', 0.9963985594237695),
('Log Loss', 0.06645759473825),
('MCC', 0.9546218487394958),
('ROC',
(array([0. , 0. , 0. , 0.01428571, 0.01428571,
0.02857143, 0.02857143, 0.04285714, 0.04285714, 1. ]),
array([0. , 0.00840336, 0.78991597, 0.78991597, 0.97478992,
0.97478992, 0.98319328, 0.98319328, 1. , 1. ]),
array([1.99999999e+00, 9.99999985e-01, 9.82750455e-01, 9.82286323e-01,
5.46864728e-01, 5.21939119e-01, 5.19466434e-01, 4.30449096e-01,
3.98630517e-01, 1.92092409e-15]))),
('Confusion Matrix',
0 1
0 68 2
1 2 117),
('# Training', 380),
('# Testing', 189)]),
'score': 0.9831932773109243}]}},
'search_order': [0, 1, 2, 3, 4]}